Skip to main content

Towards Real-Time Processing of Massive Spatio-temporally Distributed Sensor Data: A Sequential Strategy Based on Kriging

  • Chapter
  • First Online:
AGILE 2015

Part of the book series: Lecture Notes in Geoinformation and Cartography ((LNGC))

Abstract

Sensor data streams are the basis for monitoring systems which infer complex information like the excess of a pollution threshold for a region. Since sensor observations tend to be arbitrarily distributed in space and time, an appropriate interpolation method is necessary. Within geostatistics, kriging represents a powerful and established method, but is computation intensive for large datasets. We propose a method to exploit the advantages of kriging while limiting its computational complexity. Large datasets are divided into sub-models, computed separately and merged again in accordance with their kriging variances. We apply the approach to a synthetic model scenario in order to investigate its quality and performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.mono-project.com.

References

  • Appice, A., Ciampi, A., Fumarola, F., & Malerba, D. (2014). Data mining techniques in sensor networks: Summarization, interpolation and surveillance. London: Springer.

    Book  Google Scholar 

  • Armstrong, M. (1998). Basic linear geostatistics. Berlin: Springer.

    Book  Google Scholar 

  • Barillec, R., Ingram, B., Cornford, D., & Csató, L. (2011). Projected Sequential Gaussian Processes: a C++ tool for interpolation of large data sets with heterogeneous noise. Computers and Geosciences, 37 (2011), 295–309.

    Google Scholar 

  • Botts, M., Percivall, G., Reed, C., & Davidson, J. (2007). OGC® sensor web enablement: Overview and high level architecture. Open geospatial consortium. Online document: http://portal.opengeospatial.org/files/?artifact_id=25562.

  • Cressie, N. A. C. (1985). Fitting variogram models by weighted least squares. Mathematical Geology, 17(5), 1985.

    Google Scholar 

  • Cressie, N. A. C. (1990). The origins of kriging. Mathematical Geology, 22(3), 1990.

    Article  Google Scholar 

  • Cressie, N. A. C. (1993). Statistics for spatial data. New York: Wiley.

    Book  Google Scholar 

  • Cressie, N. A. C., & Wikle, C. K. (2011). Statistics for spatio-temporal data. Hoboken: Wiley.

    Google Scholar 

  • Jaynes, E. T. (2003). Probability theory. Cambridge: Cambridge University Press.

    Google Scholar 

  • Katzfuss, M., & Cressie, N. A. C. (2011). Tutorial on fixed rank kriging (FRK) of CO 2 data. Technical Report No. 858. Department of Statistics, The Ohio State University.

    Google Scholar 

  • Osborne, M. A., Roberts, S. J., Rogers, A., & Jennings, I. R. (2012). Real-time information processing of environmental sensor network data using bayesian gaussian processes. ACM Transactions on Sensor Networks, 9(1), 1.

    Google Scholar 

  • Romanowicz, R., Young, P., Brown, P., & Diggle, P. (2005). A recursive estimation approach to the spatio-temporal analysis and modeling of air quality data. Amsterdam: Elsevier.

    Google Scholar 

  • Wackernagel, H. (2003). Multivariate geostatistics: An introduction with applications. Berlin: Springer.

    Book  Google Scholar 

  • Walkowski, A. C. (2010). Modellbasierte Optimierung mobiler Geosensornetzwerke für raumzeitvariante Phänomene. Heidelberg: AKA Verlag.

    Google Scholar 

  • Webster, R., & Oliver, M. A. (2007). Geostatistics for environmental scientists (statistics in practice). West Sussex: Wiley.

    Book  Google Scholar 

  • Whittier, J. C., Nittel, S., Plummer, M. A., & Liang, Q. (2013). Towards window stream queries over continuous phenomena. In: 4th ACM SIGSPATIAL International Workshop on GeoStreaming (IWGS), Orlando.

    Google Scholar 

  • Wikle, C. K. (2003). Hierarchical models in environmental science. International Statistical Review, 71(2), 181–199.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Lorkowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lorkowski, P., Brinkhoff, T. (2015). Towards Real-Time Processing of Massive Spatio-temporally Distributed Sensor Data: A Sequential Strategy Based on Kriging. In: Bacao, F., Santos, M., Painho, M. (eds) AGILE 2015. Lecture Notes in Geoinformation and Cartography. Springer, Cham. https://doi.org/10.1007/978-3-319-16787-9_9

Download citation

Publish with us

Policies and ethics