Skip to main content
Book cover

AGILE 2015 pp 327–341Cite as

Drawing with Geography

  • Chapter
  • First Online:
  • 1089 Accesses

Part of the book series: Lecture Notes in Geoinformation and Cartography ((LNGC))

Abstract

A method is proposed to assist spatial planners in drawing with ‘geographic’ constraints. These constraints constrain graphic objects to have certain relationships that are not limited to be (Euclidean) geometric or topological but allowed to be dependent on the spatial variation of selected conditions (e.g., elevation and vegetation) characterizing an underlying geographic space. Just as in existing computer-aided design systems, the method accepts a manual change to a graphic object or constraint, and updates all affected graphic objects accordingly. The paper discusses how such a method is motivated and improves the graphic editing capability of geographic information systems, and identifies key issues for its implementation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aerts, J. C. J. H., Eisinger, E., Heuvelink, G. B. M., & Stewart, T. J. (2003). Using linear integer programming for multi-site land-use allocation. Geographical Analysis, 35(2), 148–169.

    Article  Google Scholar 

  • Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993). Network flows: theory, algorithms, and applications. Englewood Cliffs, Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Batty, J. M., & Densham, P. J. (1996). Decision support, GIS, and urban planning. Systemma Terra, 5(1), 72–76.

    Google Scholar 

  • Betting, B., & Hoffmann, C. (2011) Geometric constraint solving in parametric computer-aided design. Journal Computing Information Science Engineering, 11. doi:10.1007/1.3593408.

  • Bose, P., Maheshwari, A., Shu, C., & Wuhrer, S. (2011). A survey of geodesic paths on 3D surfaces. Computational Geometry: Theory and Applications, 44, 486–498.

    Article  Google Scholar 

  • Church, R. L., Gerrard, R. A., Gilpin, M., & Sine, P. (2003). Constructing cell-based habitat patches useful in conservation planning. Annals of the Association of American Geographers, 93(4), 814–827.

    Article  Google Scholar 

  • Cova, T. J., & Church, R. L. (2000). Contiguity constraints for single-region site search problems. Geographical Analysis, 32(4), 306–329.

    Article  Google Scholar 

  • Digital Landscape Architecture. (2009–2014). url:http://www.digital-la.de/.

  • GeoDesign Summit. (2010–2014). url:http://www.geodesignsummit.com/.

  • Gleicher, M., & Witkin, A. (1994). Drawing with constraints. The Visual Computer: International Journal of Computer Graphics, 11(1), 39–51.

    Article  Google Scholar 

  • Haverkort, H., Toma, L., & Zhuang, Y. (2009). Computing visibility on terrains in external memory. ACM Journal of Experimental Algorithmics, 13(5), 1–23.

    Google Scholar 

  • Jankowski, P. (1995). Integrating GIS and multiple criteria decision making methods. International Journal of Geographical Information Systems, 9(3), 252–273.

    Article  Google Scholar 

  • Jenson, S. K., & Domingue, J. O. (1988). Extracting topographic structure from digital elevation data for geographic information system analysis. Photogrammetric Engineering and Remote Sensing, 54(11), 1593–1600.

    Google Scholar 

  • Kondo, K. (1990). PIGMOD: parametric and interactive geometric modeller for mechanical design. Computer-Aided Design, 22(10), 633–644.

    Article  Google Scholar 

  • Ligmann-Zielinska, A., Church, R., & Jankowski, P. (2008). Spatial optimization as a generative technique for sustainable multiobjective land-use allocation. International Journal of Geographical Information Science, 22(6), 601–622.

    Article  Google Scholar 

  • McHarg, I. L. (1969). Design with nature. New York: American Museum of Natural History.

    Google Scholar 

  • Mitchell, J., & Papadimitriou, C. (1991). The weighted region problem: Finding shortest paths through a weighted planar subdivision. Journal of the ACM, 38(1), 18–73.

    Article  Google Scholar 

  • Nalle, D. J., Arthur, J. L., & Sessions, J. (2003). Designing compact and contiguous reserve networks with a hybrid heuristic algorithm. Forest Science, 48(1), 59–68.

    Google Scholar 

  • Owen, J. C. (1991). Algebraic solution for geometry from dimensional constraints (pp. 397–407). Austin: ACM Symposium on the Foundations of Solid Modeling.

    Google Scholar 

  • Önal, H., & Wang, Y. (2008). A graph theory approach for designing conservation reserve net-works with minimal fragmentation. Networks, 51(2), 142–152.

    Article  Google Scholar 

  • Shirabe, T. (2005). A model of contiguity for spatial unit allocation. Geographical Analysis, 37(1), 2–16.

    Article  Google Scholar 

  • Shirabe, T. (2008). Minimum work paths in elevated networks. Networks, 52(2), 88–97.

    Article  Google Scholar 

  • Shirabe, T. (2009). Map algebraic characterization of self-adapting neighborhoods. In: K. S. Hornsby, C. Claramunt, M. Denis & G. Ligozat (Eds.), Spatial Information Theory: Cognitive and Computational Foundations. Lecture Notes in Computer Science. In Proceedings of the Ninth International Conference on Spatial Information Theory: COSIT’09 (Vol. 5756, pp. 280–294). Berlin: Springer.

    Google Scholar 

  • Shirabe, T. (2011). A heuristic for the maximum value region problem in raster space. International Journal of Geographic Information Science, 25(7), 1097–1116.

    Article  Google Scholar 

  • Spatial concepts in GIS and design. (2008). url:http://ncgia.ucsb.edu/projects/scdg/.

  • Tomlin, C. D. (1990). Geographic information systems and cartographic modeling. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Williams, J. C. (2002). A zero-one programming model for contiguous land acquisition. Geographical Analysis, 34(4), 330–349.

    Article  Google Scholar 

  • Woeginger, G. J. (1992). Computing maximum valued regions. Acta Cybern, 10(4), 303–315.

    Google Scholar 

  • Xiao, N. (2006). An evolutionary algorithm for site search problems. Geographical Analysis, 38(3), 227–247.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Shirabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shirabe, T. (2015). Drawing with Geography. In: Bacao, F., Santos, M., Painho, M. (eds) AGILE 2015. Lecture Notes in Geoinformation and Cartography. Springer, Cham. https://doi.org/10.1007/978-3-319-16787-9_19

Download citation

Publish with us

Policies and ethics