Skip to main content

Residual Stresses and Fatigue Life Enhancement of Cold Spray

  • Chapter
  • First Online:
Modern Cold Spray

Abstract

Due to the high impact of particles with substrates in cold spray coating, local plasticity and hence local residual stresses are formed. In this chapter, the formation, magnitude, distribution, simulation, and life enhancement of the residual stress induced by cold spray are studied. First, the cause of residual stress is discussed. Then, the methods for quantifying these stresses are reviewed, and measurement results are presented. Second, using sound constitutive plasticity models and incorporating underlying factors in a cold spray process, the numerical procedure for modeling the cold spray process is laid out. Finally, the effect of cold spray on fatigue life enhancement of the substrate is discussed. A comprehensive review of the pertaining literature is also provided in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abaqus 6.12–1. 2012. Analysis user’s manual, simulia. http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MA7075T6.

  • ASM. 1989. ASM metals handbook. Vol. 2.

    Google Scholar 

  • ASTM standard B593–96. 2009. Standard test method for bending fatigue testing for copper-alloy spring materials.

    Google Scholar 

  • ASTM standard E739–10. 2010. Standard practice for statistical analysis of linear or linearized stress life (S–N) and strain life (e–N) fatigue data.

    Google Scholar 

  • Albinmousa, J., H. Jahed, and S. Lambert. 2011. Cyclic axial and cyclic torsional behaviour of extruded AZ31B magnesium alloy. International Journal of Fatigue 33 (11): 1403–1416.

    Article  Google Scholar 

  • Allen, T. 2003. Powder sampling and particle size determination. Elsevier.

    Google Scholar 

  • Assadi, H., F. Gärtner, T. Stoltenhoff, and H. Kreye. 2003. Bonding mechanism in cold gas spraying. Acta Materialia 51 (15): 4379–4394.

    Article  Google Scholar 

  • Bagherifard, S., I. Fernàndez Parienete, R. Ghelichi, M. Guagliano, and S. Vezzù. 2010a. Effect of shot peening on residual stresses and surface work-hardening in cold sprayed coatings. Key Engineering Materials 417:397–400.

    Google Scholar 

  • Bagherifard, S., R. Ghelichi, and M. Guagliano. 2010b. A numerical model of severe shot peening (SSP) to predict the generation of a nanostructured surface layer of material. Surface and Coatings Technology 204 (24): 4081–4090.

    Article  Google Scholar 

  • Benck, R. F. 1976. Quasi-static tensile stress strain curves–II, rolled homogeneous armor, DTIC Document.

    Google Scholar 

  • Brar, N. S., V. S. Joshi, B. W. Harris, M. Elert, M. D. Furnish, W. W. Anderson, W. G. Proud, and W. T. Butler. 2009. Constitutive model constants for Al7075-T651 and Al7075-T6. Aip conference proceedings.

    Google Scholar 

  • Cadney, S., M. Brochu, P. Richer, and B. Jodoin. 2008. Cold gas dynamic spraying as a method for freeforming and joining materials. Surface and Coatings Technology 202 (12): 2801–2806.

    Article  Google Scholar 

  • Champagne, V. K. 2007. The cold spray materials deposition process: Fundamentals and applications. Elsevier.

    Google Scholar 

  • Cizek, J., O. Kovarik, J. Siegl, K. A. Khor, and I. Dlouhy. 2013. Influence of plasma and cold spray deposited Ti Layers on high-cycle fatigue properties of Ti6Al4V substrates. Surface and coatings technology 217:23–33.

    Article  Google Scholar 

  • Dixon, W. J., and F. J. Massey. 1969. Introduction to statistical analysis. McGraw-Hill New York.

    Google Scholar 

  • Dykhuizen, R. C., and M. F. Smith. 1998. Gas dynamic principles of cold spray. Journal of Thermal Spray Technology 7 (2): 205–212.

    Article  Google Scholar 

  • Fine, M. E. 1964. Introduction to phase transformations in condensed systems. Macmillan.

    Google Scholar 

  • Ghelichi, R. 2012. Cold spray coating aimed nanocrystallization: Process characterization and fatigue strenght assessment.

    Google Scholar 

  • Ghelichi, R., S. Bagherifard, M. Guagliano, and M. Verani. 2011. Numerical simulation of cold spray coating. Surface and Coatings Technology 205 (23): 5294–5301.

    Article  Google Scholar 

  • Ghelichi, R., D. MacDonald, S. Bagherifard, H. Jahed, M. Guagliano, and B. Jodoin. 2012. Microstructure and fatigue behavior of cold spray coated Al5052. Acta Materialia 60 (19): 6555–6561.

    Article  Google Scholar 

  • Ghelichi, R., S. Bagherifard, D. Mac Donald, M. Brochu, H. Jahed, B. Jodoin, and M. Guagliano. 2014a. Fatigue strength of Al alloy cold sprayed with nanocrystalline powders. International Journal of Fatigue 65:51–57.

    Article  Google Scholar 

  • Ghelichi, R., S. Bagherifard, D. MacDonald, I. Fernandez-Pariente, B. Jodoin, and M. Guagliano. 2014b. Experimental and numerical study of residual stress evolution in cold spray coating. Applied Surface Science 288:26–33.

    Article  Google Scholar 

  • Greving, D. J., E. F. Rybicki, and J. R. Shadley. 1994. Through-thickness residual stress evaluations for several industrial thermal spray coatings using a modified layer-removal method. Journal of thermal spray technology 3 (4): 379–388.

    Article  Google Scholar 

  • Grujicic, M., C. Tong, W. S. DeRosset, and D. Helfritch. 2003. Flow analysis and nozzle-shape optimization for the cold-gas dynamic-spray process. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 217 (11): 1603–1613.

    Article  Google Scholar 

  • Grujicic, M., C. L. Zhao, W. S. DeRosset, and D. Helfritch. 2004a. Adiabatic shear instability based mechanism for particles/substrate bonding in the cold-gas dynamic-spray process. Materials & design 25 (8): 681–688.

    Article  Google Scholar 

  • Grujicic, M., C. L. Zhao, C. Tong, W. S. DeRosset, and D. Helfritch. 2004b. Analysis of the impact velocity of powder particles in the cold-gas dynamic-spray process. Materials Science and Engineering: A 368 (1): 222–230.

    Article  Google Scholar 

  • Jeong, C. Y., and S. Ha. 2008. Fatigue properties of Al–Si casting alloy with cold sprayed Al/SiC coating. International Journal of Cast Metals Research 21 (1–4): 235–238.

    Article  Google Scholar 

  • Johnson, G. R., and W. H. Cook. 1983. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. Proceedings of the 7th international symposium on ballistics.

    Google Scholar 

  • Kalatehmollaei, E., H. Mahmoudi-Asl, and H. Jahed. 2014. An asymmetric elastic–plastic analysis of the load-controlled rotating bending test and its application in the fatigue life estimation of wrought magnesium AZ31B. International Journal of Fatigue 64:33–41.

    Article  Google Scholar 

  • Kovářík, O., J. Siegl, and Z. Procházka. 2008. Fatigue behavior of bodies with thermally sprayed metallic and ceramic deposits. Journal of thermal spray technology 17 (4): 525–532.

    Article  Google Scholar 

  • Kumar, S., G. Bae, K. Kang, S. Yoon, and C. Lee. 2009. Effect of powder state on the deposition behaviour and coating development in kinetic spray process. Journal of Physics D: Applied Physics 42 (7): 075305.

    Article  Google Scholar 

  • Lemaitre, J., and J.-L. Chaboche. 1990. Mechanics of solid materials. Cambridge University Press.

    Google Scholar 

  • Li, C.-J., W.-Y. Li, and H. Liao. 2006. Examination of the critical velocity for deposition of particles in cold spraying. Journal of Thermal Spray Technology 15 (2): 212–222.

    Article  Google Scholar 

  • LS-DYNA3D. 1999. User’s manual. Ver. 950. Livermore software technology corporation, Livermore, California.

    Google Scholar 

  • Los Alamos. 1969. “Selected Hugoniots”, Group GMX-6, Los Alamos Scientific Lab., LA-4167–MS.

    Google Scholar 

  • Luzin, V., K. Spencer, and M. X. Zhang. 2011. Residual stress and thermo-mechanical properties of cold spray metal coatings. Acta Materialia 59 (3): 1259–1270.

    Article  Google Scholar 

  • Maev, R. G., and V. Leshchynsky. 2009. Introduction to low pressure gas dynamic spray: Physics and technology. Wiley.

    Google Scholar 

  • Mahmoudi, H. 2012. MSc. thesis. Mechanical and Mechatronics Engineering Department, University of Waterloo.

    Google Scholar 

  • Mahmoudi, H., H. Jahed, and J. Villafuerte. 2012. The effect of cold spray coating on fatigue life of AZ31B. 9th International conference on magnesium alloys and their applications, Vancouver, BC.

    Google Scholar 

  • McCune, R. C., W. T. Donlon, O. O. Popoola, and E. L. Cartwright. 2000. Characterization of copper layers produced by cold gas-dynamic spraying. Journal of Thermal Spray Technology 9 (1): 73–82.

    Article  Google Scholar 

  • Moridi, A., S. M. Hassani-Gangaraj, M. Guagliano, and S. Vezzu. 2014. Effect of cold spray deposition of similar material on fatigue behavior of Al 6082 alloy. Fracture and Fatigue 7:51–57 (Springer).

    Google Scholar 

  • Najafi, A., and M. Rais-Rohani. 2011. Mechanics of axial plastic collapse in multi-cell, multi-corner crush tubes. Thin-Walled Structures 49 (1): 1–12.

    Article  Google Scholar 

  • Papyrin, A., V. Kosarev, S. Klinkov, A. Alkhimov, and V. M. Fomin. 2006. Cold spray technology. Elsevier.

    Google Scholar 

  • Pierazzo, E., N. Artemieva, E. Asphaug, E. C. Baldwin, J. Cazamias, R. Coker, G. S. Collins, D. A. Crawford, T. Davison, D. Elbeshausen, K. A. Holsapple, K. R. Housen, D. G. Korycansky, and K. WÜNnemann. 2008. Validation of numerical codes for impact and explosion cratering: Impacts on strengthless and metal targets. Meteoritics & Planetary Science 43 (12): 1917–1938.

    Article  Google Scholar 

  • Price, T. S., P. H. Shipway, and D. G. McCartney. 2006. Effect of cold spray deposition of a titanium coating on fatigue behavior of a titanium alloy. Journal of Thermal Spray Technology 15 (4): 507–512.

    Article  Google Scholar 

  • Ramakrishnan, K. N. 2000. Modified Rosin Rammler equation for describing particle size distribution of milled powders. Journal of Materials Science Letters 19 (21): 1903–1906.

    Article  Google Scholar 

  • Robert, C. 1984. CRC handbook of chemistry and physics. CRC Press.

    Google Scholar 

  • RosIn, P. 1933. The laws governing the fineness of powdered coal. Journal of the Institute of Fuel 7:29–36.

    Google Scholar 

  • Rybicki, E. F., J. R. Shadley, Y. Xiong, and D. J. Greving. 1995. A cantilever beam method for evaluating Young’s modulus and Poisson’s ratio of thermal spray coatings. Journal of Thermal Spray Technology 4 (4): 377–383.

    Article  Google Scholar 

  • Sansoucy, E., G. E. Kim, A. L. Moran, and B. Jodoin. 2007. Mechanical characteristics of Al-Co-Ce coatings produced by the cold spray process. Journal of Thermal Spray Technology 16 (5–6): 651–660.

    Article  Google Scholar 

  • Shayegan, G., H. Mahmoudi, R. Ghelichi, J. Villafuerte, J. Wang, M. Guagliano, and H. Jahed. 2014. Residual stress induced by cold spray coating of magnesium AZ31B extrusion. Materials & Design 60:72–84.

    Article  Google Scholar 

  • Spencer, K., V. Luzin, N. Matthews, and M. X. Zhang. 2012. Residual stresses in cold spray Al coatings: The effect of alloying and of process parameters. Surface and Coatings Technology 206 (19–20): 4249–4255.

    Article  Google Scholar 

  • Totten, G. E. 2002. Handbook of residual stress and deformation of steel. ASM international.

    Google Scholar 

  • Tsui, Y. C., and T. W. Clyne. 1997. An analytical model for predicting residual stresses in progressively deposited coatings part 1: Planar geometry. Thin Solid Films 306 (1): 23–33.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Jahed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jahed, H., Ghelichi, R. (2015). Residual Stresses and Fatigue Life Enhancement of Cold Spray. In: Villafuerte, J. (eds) Modern Cold Spray. Springer, Cham. https://doi.org/10.1007/978-3-319-16772-5_5

Download citation

Publish with us

Policies and ethics