Skip to main content

Long Noncoding RNA and Its Role in the Control of Gene Expression in the Skin

  • Chapter
  • First Online:
Epigenetic Regulation of Skin Development and Regeneration

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 585 Accesses

Abstract

Epithelial tissues in animals regulate life-sustaining processes at the boundary between the host and its environment. It is becoming evident that regulatory noncoding RNAs play fundamental roles in orchestrating the formation of the skin, including lineage-specific commitment and specialization, often operating at the interface between stemness and differentiation. In this review, we discuss the current understanding of how members of a specific class of RNAs, long noncoding RNAs (lncRNAs), function in the control of gene expression to regulate development and adult stem cell maintenance in the skin. Understanding the activities of lncRNAs will elucidate a novel mechanism that modulates gene expression in the skin, and could ultimately lead to targeted noncoding RNA-based therapies to improve effectiveness of current regenerative strategies and provide new avenues for repair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blanpain C, Horsley V, Fuchs E. Epithelial stem cells: turning over new leaves. Cell. 2007;128:445–58. https://doi.org/10.1016/j.cell.2007.01.014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Millington GWM. Epigenetics and dermatological disease. Pharmacogenomics. 2008;9:1835–50. https://doi.org/10.2217/14622416.9.12.1835.

    Article  PubMed  CAS  Google Scholar 

  3. Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 2011;25:1915–27. https://doi.org/10.1101/gad.17446611.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R, Ravasi T, Lenhard B, Wells C, Kodzius R, Shimokawa K, Bajic VB, Brenner SE, Batalov S, Forrest ARR, Zavolan M, Davis MJ, Wilming LG, Aidinis V, Allen JE, Ambesi-Impiombato A, Apweiler R, Aturaliya RN, Bailey TL, Bansal M, Baxter L, Beisel KW, Bersano T, Bono H, Chalk AM, Chiu KP, Choudhary V, Christoffels A, Clutterbuck DR, Crowe ML, Dalla E, Dalrymple BP, de Bono B, Gatta Della G, di Bernardo D, Down T, Engstrom P, Fagiolini M, Faulkner G, Fletcher CF, Fukushima T, Furuno M, Futaki S, Gariboldi M, Georgii-Hemming P, Gingeras TR, Gojobori T, Green RE, Gustincich S, Harbers M, Hayashi Y, Hensch TK, Hirokawa N, Hill D, Huminiecki L, Iacono M, Ikeo K, Iwama A, Ishikawa T, Jakt M, Kanapin A, Katoh M, Kawasawa Y, Kelso J, Kitamura H, Kitano H, Kollias G, Krishnan SPT, Kruger A, Kummerfeld SK, Kurochkin IV, Lareau LF, Lazarevic D, Lipovich L, Liu J, Liuni S, McWilliam S, Madan Babu M, Madera M, Marchionni L, Matsuda H, Matsuzawa S, Miki H, Mignone F, Miyake S, Morris K, Mottagui-Tabar S, Mulder N, Nakano N, Nakauchi H, Ng P, Nilsson R, Nishiguchi S, Nishikawa S, Nori F, Ohara O, Okazaki Y, Orlando V, Pang KC, Pavan WJ, Pavesi G, Pesole G, Petrovsky N, Piazza S, Reed J, Reid JF, Ring BZ, Ringwald M, Rost B, Ruan Y, Salzberg SL, Sandelin A, Schneider C, Schönbach C, Sekiguchi K, Semple CAM, Seno S, Sessa L, Sheng Y, Shibata Y, Shimada H, Shimada K, Silva D, Sinclair B, Sperling S, Stupka E, Sugiura K, Sultana R, Takenaka Y, Taki K, Tammoja K, Tan SL, Tang S, Taylor MS, Tegner J, Teichmann SA, Ueda HR, van Nimwegen E, Verardo R, Wei CL, Yagi K, Yamanishi H, Zabarovsky E, Zhu S, Zimmer A, Hide W, Bult C, Grimmond SM, Teasdale RD, Liu ET, Brusic V, Quackenbush J, Wahlestedt C, Mattick JS, Hume DA, Kai C, Sasaki D, Tomaru Y, Fukuda S, Kanamori-Katayama M, Suzuki M, Aoki J, Arakawa T, Iida J, Imamura K, Itoh M, Kato T, Kawaji H, Kawagashira N, Kawashima T, Kojima M, Kondo S, Konno H, Nakano K, Ninomiya N, Nishio T, Okada M, Plessy C, Shibata K, Shiraki T, Suzuki S, Tagami M, Waki K, Watahiki A, Okamura-Oho Y, Suzuki H, Kawai J, Hayashizaki Y, FANTOM Consortium, RIKEN Genome Exploration Research Group and Genome Science Group (Genome Network Project Core Group). The transcriptional landscape of the mammalian genome. Science. 2005;309:1559–63. https://doi.org/10.1126/science.1112014.

  5. Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, Huarte M, Zuk O, Carey BW, Cassady JP, Cabili MN, Jaenisch R, Mikkelsen TS, Jacks T, Hacohen N, Bernstein BE, Kellis M, Regev A, Rinn JL, Lander ES. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature. 2009;458:223–7. https://doi.org/10.1038/nature07672.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, Thomas K, Presser A, Bernstein BE, van Oudenaarden A, Regev A, Lander ES, Rinn JL. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A. 2009;106:11667–72. https://doi.org/10.1073/pnas.0904715106.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009;136:629–41. https://doi.org/10.1016/j.cell.2009.02.006.

    Article  PubMed  CAS  Google Scholar 

  8. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, Xue C, Marinov GK, Khatun J, Williams BA, Zaleski C, Rozowsky J, Röder M, Kokocinski F, Abdelhamid RF, Alioto T, Antoshechkin I, Baer MT, Bar NS, Batut P, Bell K, Bell I, Chakrabortty S, Chen X, Chrast J, Curado J, Derrien T, Drenkow J, Dumais E, Dumais J, Duttagupta R, Falconnet E, Fastuca M, Fejes-Toth K, Ferreira P, Foissac S, Fullwood MJ, Gao H, Gonzalez D, Gordon A, Gunawardena H, Howald C, Jha S, Johnson R, Kapranov P, King B, Kingswood C, Luo OJ, Park E, Persaud K, Preall JB, Ribeca P, Risk B, Robyr D, Sammeth M, Schaffer L, See L-H, Shahab A, Skancke J, Suzuki AM, Takahashi H, Tilgner H, Trout D, Walters N, Wang H, Wrobel J, Yu Y, Ruan X, Hayashizaki Y, Harrow J, Gerstein M, Hubbard T, Reymond A, Antonarakis SE, Hannon G, Giddings MC, Ruan Y, Wold B, Carninci P, Guigo R, Gingeras TR. Landscape of transcription in human cells. Nature. 2012;489:101–8. https://doi.org/10.1038/nature11233.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10:155–9. https://doi.org/10.1038/nrg2521.

    Article  PubMed  CAS  Google Scholar 

  10. Clark MB, Mattick JS. Long noncoding RNAs in cell biology. Semin Cell Dev Biol. 2011;22:366–76. https://doi.org/10.1016/j.semcdb.2011.01.001.

    Article  PubMed  CAS  Google Scholar 

  11. Mattick JS, Amaral PP, Dinger ME, Mercer TR, Mehler MF. RNA regulation of epigenetic processes. BioEssays. 2009;31:51–9. https://doi.org/10.1002/bies.080099.

    Article  PubMed  CAS  Google Scholar 

  12. Nagano T, Fraser P. No-nonsense functions for long noncoding RNAs. Cell. 2011;145:178–81. https://doi.org/10.1016/j.cell.2011.03.014.

    Article  PubMed  CAS  Google Scholar 

  13. Wang KCK, Chang HYH. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011;43:904–14. https://doi.org/10.1016/j.molcel.2011.08.018.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Bernstein E, Allis CD. RNA meets chromatin. Genes Dev. 2005;19:1635–55. https://doi.org/10.1101/gad.1324305.

    Article  PubMed  CAS  Google Scholar 

  15. Bracken AP, Helin K. Polycomb group proteins: navigators of lineage pathways led astray in cancer. Nat Rev Cancer. 2009;9:773–84. https://doi.org/10.1038/nrc2736.

    Article  PubMed  CAS  Google Scholar 

  16. Faghihi MA, Wahlestedt C. Regulatory roles of natural antisense transcripts. Nat Rev Mol Cell Biol. 2009;10:637–43. https://doi.org/10.1038/nrm2738.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Whitehead J, Pandey GK, Kanduri C. Regulation of the mammalian epigenome by long noncoding RNAs. Biochim Biophys Acta. 2009;1790:936–47. https://doi.org/10.1016/j.bbagen.2008.10.007.

    Article  PubMed  CAS  Google Scholar 

  18. Wilusz JE, Sunwoo H, Spector DL. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev. 2009;23:1494–504. https://doi.org/10.1101/gad.1800909.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS. Non-coding RNAs: regulators of disease. J Pathol. 2010;220:126–39. https://doi.org/10.1002/path.2638.

    Article  PubMed  CAS  Google Scholar 

  20. Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem. 2012;81:145–66. https://doi.org/10.1146/annurev-biochem-051410-092902.

    Article  PubMed  CAS  Google Scholar 

  21. Qureshi IA, Mattick JS, Mehler MF. Long non-coding RNAs in nervous system function and disease. Brain Res. 2010;1338:20–35. https://doi.org/10.1016/j.brainres.2010.03.110.

    Article  PubMed  CAS  Google Scholar 

  22. Wapinski O, Chang HY. Long noncoding RNAs and human disease. Trends Cell Biol. 2011;21:354–61. https://doi.org/10.1016/j.tcb.2011.04.001.

    Article  PubMed  CAS  Google Scholar 

  23. Paul J, Duerksen JD. Chromatin-associated RNA content of heterochromatin and euchromatin. Mol Cell Biochem. 1975;9:9–16.

    Article  CAS  PubMed  Google Scholar 

  24. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell. 2006;125:315–26. https://doi.org/10.1016/j.cell.2006.02.041.

    Article  PubMed  CAS  Google Scholar 

  25. Pandey RR, Mondal T, Mohammad F, Enroth S, Redrup L, Komorowski J, Nagano T, Mancini-Dinardo D, Kanduri C. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell. 2008;32:232–46. https://doi.org/10.1016/j.molcel.2008.08.022.

    Article  PubMed  CAS  Google Scholar 

  26. Rodríguez-Campos A, Azorín F. RNA is an integral component of chromatin that contributes to its structural organization. PLoS One. 2007;2:e1182. https://doi.org/10.1371/journal.pone.0001182.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Clemson CM, McNeil JA, Willard HF, Lawrence JB. XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure. J Cell Biol. 1996;132:259–75.

    Article  CAS  PubMed  Google Scholar 

  28. Muchardt C, Guilleme M, Seeler J-S, Trouche D, Dejean A, Yaniv M. Coordinated methyl and RNA binding is required for heterochromatin localization of mammalian HP1alpha. EMBO Rep. 2002;3:975–81. https://doi.org/10.1093/embo-reports/kvf194.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Majewski IJ, Blewitt ME, de Graaf CA, McManus EJ, Bahlo M, Hilton AA, Hyland CD, Smyth GK, Corbin JE, Metcalf D, Alexander WS, Hilton DJ. Polycomb repressive complex 2 (PRC2) restricts hematopoietic stem cell activity. PLoS Biol. 2008;6:e93. https://doi.org/10.1371/journal.pbio.0060093.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Spivakov M, Fisher AG. Epigenetic signatures of stem-cell identity. Nat Rev Genet. 2007;8:263–71. https://doi.org/10.1038/nrg2046.

    Article  PubMed  CAS  Google Scholar 

  31. Surani MA, Hayashi K, Hajkova P. Genetic and epigenetic regulators of pluripotency. Cell. 2007;128:747–62. https://doi.org/10.1016/j.cell.2007.02.010.

    Article  PubMed  CAS  Google Scholar 

  32. Schuettengruber B, Chourrout D, Vervoort M, Leblanc B, Cavalli G. Genome regulation by polycomb and trithorax proteins. Cell. 2007;128:735–45. https://doi.org/10.1016/j.cell.2007.02.009.

    Article  PubMed  CAS  Google Scholar 

  33. Schwartz YB, Pirrotta V. Polycomb silencing mechanisms and the management of genomic programmes. Nat Rev Genet. 2007;8:9–22. https://doi.org/10.1038/nrg1981.

    Article  PubMed  CAS  Google Scholar 

  34. Ezhkova E, Pasolli HA, Parker JS, Stokes N, Su I-H, Hannon G, Tarakhovsky A, Fuchs E. Ezh2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells. Cell. 2009;136:1122–35. https://doi.org/10.1016/j.cell.2008.12.043.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA, Lee TI, Levine SS, Wernig M, Tajonar A, Ray MK, Bell GW, Otte AP, Vidal M, Gifford DK, Young RA, Jaenisch R. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature. 2006;441:349–53. https://doi.org/10.1038/nature04733.

    Article  PubMed  CAS  Google Scholar 

  36. Pasini D, Bracken AP, Hansen JB, Capillo M, Helin K. The polycomb group protein Suz12 is required for embryonic stem cell differentiation. Mol Cell Biol. 2007;27:3769–79. https://doi.org/10.1128/MCB.01432-06.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Chang HY, Chi J-T, Dudoit S, Bondre C, van de Rijn M, Botstein D, Brown PO. Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc Natl Acad Sci U S A. 2002;99:12877–82. https://doi.org/10.1073/pnas.162488599.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Chi J-T, Chang HY, Wang NN, Chang DS, Dunphy N, Brown PO. Genomewide view of gene silencing by small interfering RNAs. Proc Natl Acad Sci U S A. 2003;100:6343–6. https://doi.org/10.1073/pnas.1037853100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Rinn JL, Bondre C, Gladstone HB, Brown PO, Chang HY. Anatomic demarcation by positional variation in fibroblast gene expression programs. PLoS Genet. 2006;2:e119. https://doi.org/10.1371/journal.pgen.0020119.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Wang KC, Helms JA, Chang HY. Regeneration, repair and remembering identity: the three Rs of Hox gene expression. Trends Cell Biol. 2009;19:268–75. https://doi.org/10.1016/j.tcb.2009.03.007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Lemons D, McGinnis W. Genomic evolution of Hox gene clusters. Science. 2006;313:1918–22. https://doi.org/10.1126/science.1132040.

    Article  PubMed  CAS  Google Scholar 

  42. Rinn JL, Wang JK, Allen N, Brugmann SA, Mikels AJ, Liu H, Ridky TW, Stadler HS, Nusse R, Helms JA, Chang HY. A dermal HOX transcriptional program regulates site-specific epidermal fate. Genes Dev. 2008;22:303–7. https://doi.org/10.1101/gad.1610508.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E, Chang HY. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell. 2007;129:1311–23. https://doi.org/10.1016/j.cell.2007.05.022.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y, Lajoie BR, Protacio A, Flynn RA, Gupta RA, Wysocka J, Lei M, Dekker J, Helms JA, Chang HY. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature. 2011;472:120–4. https://doi.org/10.1038/nature09819.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Amaral PP, Neyt C, Wilkins SJ, Askarian-Amiri ME, Sunkin SM, Perkins AC, Mattick JS. Complex architecture and regulated expression of the Sox2ot locus during vertebrate development. RNA. 2009;15:2013–27. https://doi.org/10.1261/rna.1705309.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Araki R, Fukumura R, Sasaki N, Kasama Y, Suzuki N, Takahashi H, Tabata Y, Saito T, Abe M. More than 40,000 transcripts, including novel and noncoding transcripts, in mouse embryonic stem cells. Stem Cells. 2006;24:2522–8. https://doi.org/10.1634/stemcells.2006-0005.

    Article  PubMed  CAS  Google Scholar 

  47. Dinger ME, Amaral PP, Mercer TR, Pang KC, Bruce SJ, Gardiner BB, Askarian-Amiri ME, Ru K, Solda G, Simons C, Sunkin SM, Crowe ML, Grimmond SM, Perkins AC, Mattick JS. Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Res. 2008;18:1433–45. https://doi.org/10.1101/gr.078378.108.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS. Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci U S A. 2008;105:716–21. https://doi.org/10.1073/pnas.0706729105.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Pang KC, Dinger ME, Mercer TR, Malquori L, Grimmond SM, Chen W, Mattick JS. Genome-wide identification of long noncoding RNAs in CD8+ T cells. J Immunol. 2009;182:7738–48. https://doi.org/10.4049/jimmunol.0900603.

    Article  PubMed  CAS  Google Scholar 

  50. Margueron R, Justin N, Ohno K, Sharpe ML, Son J, Drury WJ, Voigt P, Martin SR, Taylor WR, De Marco V, Pirrotta V, Reinberg D, Gamblin SJ. Role of the polycomb protein EED in the propagation of repressive histone marks. Nature. 2009;461:762–7. https://doi.org/10.1038/nature08398.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Li L, Liu B, Wapinski OL, Tsai M-C, Qu K, Zhang J, Carlson JC, Lin M, Fang F, Gupta RA, Helms JA, Chang HY. Targeted disruption of hotair leads to homeotic transformation and gene derepression. Cell Rep. 2013;5:3–12. https://doi.org/10.1016/j.celrep.2013.09.003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai M-C, Hung T, Argani P, Rinn JL, Wang Y, Brzoska P, Kong B, Li R, West RB, van de Vijver MJ, Sukumar S, Chang HY. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010;464:1071–6. https://doi.org/10.1038/nature08975.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Zhao J, Ohsumi TK, Kung JT, Ogawa Y, Grau DJ, Sarma K, Song JJ, Kingston RE, Borowsky M, Lee JT. Genome-wide identification of polycomb-associated RNAs by RIP-seq. Mol Cell. 2010;40:939–53. https://doi.org/10.1016/j.molcel.2010.12.011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Sanyal A, Baù D, Martí-Renom MA, Dekker J. Chromatin globules: a common motif of higher order chromosome structure? Curr Opin Cell Biol. 2011;23:325–31. https://doi.org/10.1016/j.ceb.2011.03.009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Lupiáñez DG, Spielmann M, Mundlos S. Breaking TADs: how alterations of chromatin domains result in disease. Trends Genet. 2016;32:225–37. https://doi.org/10.1016/j.tig.2016.01.003.

    Article  PubMed  CAS  Google Scholar 

  56. Hu W, Dominguez JRA, Lodish HF. Regulation of mammalian cell differentiation by long non-coding RNAs. EMBO Rep. 2012;13:971–83. https://doi.org/10.1038/embor.2012.145.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Yi R, Fuchs E. A miR image of stem cells and their lineages. Curr Top Dev Biol. 2012;99:175–99. https://doi.org/10.1016/B978-0-12-387038-4.00007-0.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Kretz M, Webster DE, Flockhart RJ, Lee CS, Zehnder A, Lopez-Pajares V, Qu K, Zheng GXY, Chow J, Kim GE, Rinn JL, Chang HY, Siprashvili Z, Khavari PA. Suppression of progenitor differentiation requires the long noncoding RNA ANCR. Genes Dev. 2012;26:338–43. https://doi.org/10.1101/gad.182121.111.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK, Munson G, Young G, Lucas AB, Ach R, Bruhn L, Yang X, Amit I, Meissner A, Regev A, Rinn JL, Root DE, Lander ES. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature. 2011;477:295–300. https://doi.org/10.1038/nature10398.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Kretz M, Siprashvili Z, Chu C, Webster DE, Zehnder A, Qu K, Lee CS, Flockhart RJ, Groff AF, Chow J, Johnston D, Kim GE, Spitale RC, Flynn RA, Zheng GXY, Aiyer S, Raj A, Rinn JL, Chang HY, Khavari PA. Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature. 2013;493:231–5. https://doi.org/10.1038/nature11661.

    Article  PubMed  CAS  Google Scholar 

  61. Lopez-Pajares V, Qu K, Zhang J, Webster DE, Barajas BC, Siprashvili Z, Zarnegar BJ, Boxer LD, Rios EJ, Tao S, Kretz M, Khavari PA. A LncRNA-MAF:MAFB transcription factor network regulates epidermal differentiation. Dev Cell. 2015;32:693–706. https://doi.org/10.1016/j.devcel.2015.01.028.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Yap KL, Li S, Muñoz-Cabello AM, Raguz S, Zeng L, Mujtaba S, Gil J, Walsh MJ, Zhou M-M. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell. 2010;38:662–74. https://doi.org/10.1016/j.molcel.2010.03.021.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Pasmant E, Sabbagh A, Vidaud M, Bièche I. ANRIL, a long, noncoding RNA, is an unexpected major hotspot in GWAS. FASEB J. 2011;25:444–8. https://doi.org/10.1096/fj.10-172452.

    Article  PubMed  CAS  Google Scholar 

  64. Khaitan D, Dinger ME, Mazar J, Crawford J, Smith MA, Mattick JS, Perera RJ. The melanoma-upregulated long noncoding RNA SPRY4-IT1 modulates apoptosis and invasion. Cancer Res. 2011;71:3852–62. https://doi.org/10.1158/0008-5472.CAN-10-4460.

    Article  PubMed  CAS  Google Scholar 

  65. Flockhart RJ, Webster DE, Qu K, Mascarenhas N, Kovalski J, Kretz M, Khavari PA. BRAFV600E remodels the melanocyte transcriptome and induces BANCR to regulate melanoma cell migration. Genome Res. 2012;22:1006–14. https://doi.org/10.1101/gr.140061.112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Lee CS, Ungewickell A, Bhaduri A, Qu K, Webster DE, Armstrong R, Weng WK, Aros CJ, Mah A, Chen RO, Lin M, Sundram U, Chang HY, Kretz M, Kim YH, Khavari PA. Transcriptome sequencing in Sezary syndrome identifies Sezary cell and mycosis fungoides-associated LncRNAs and novel transcripts. Blood. 2012;120:3288. https://doi.org/10.1182/blood-2012-04-423061.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Sonkoly E, Bata-Csörgő Z, Pivarcsi A, Polyanka H, Kenderessy-Szabo A, Molnar G, Szentpali K, Bari L, Megyeri K, Mandi Y, Dobozy A, Kemény L, Széll M. Identification and characterization of a novel, psoriasis susceptibility-related noncoding RNA gene, PRINS. J Biol Chem. 2005;280:24159–67. https://doi.org/10.1074/jbc.M501704200.

    Article  PubMed  CAS  Google Scholar 

  68. Tsoi LC, Iyer MK, Stuart PE, Swindell WR, Gudjonsson JE, Tejasvi T, Sarkar MK, Li B, Ding J, Voorhees JJ, Kang HM, Nair RP, Chinnaiyan AM, Abecasis GR, Elder JT. Analysis of long non-coding RNAs highlights tissue-specific expression patterns and epigenetic profiles in normal and psoriatic skin. Genome Biol. 2015;16:24. https://doi.org/10.1186/s13059-014-0570-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Bernard JJ, Cowing-Zitron C, Nakatsuji T, Muehleisen B, Muto J, Borkowski AW, Martinez L, Greidinger EL, Yu BD, Gallo RL. Ultraviolet radiation damages self noncoding RNA and is detected by TLR3. Nat Med. 2012;18:1286–90. https://doi.org/10.1038/nm.2861.

    Article  PubMed  CAS  Google Scholar 

  70. Hung T, Wang Y, Lin MF, Koegel AK, Kotake Y, Grant GD, Horlings HM, Shah N, Umbricht C, Wang P, Wang Y, Kong B, Langerød A, Børresen-Dale A-L, Kim SK, van de Vijver M, Sukumar S, Whitfield ML, Kellis M, Xiong Y, Wong DJ, Chang HY. Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet. 2011;43:621. https://doi.org/10.1038/ng.848.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Schmitt AM, Garcia JT, Hung T, Flynn RA, Shen Y, Qu K, Payumo AY, Peres-da-Silva A, Broz DK, Baum R, Guo S, Chen JK, Attardi LD, Chang HY. An inducible long noncoding RNA amplifies DNA damage signaling. Nat Genet. 2016;48:1370–6. https://doi.org/10.1038/ng.3673.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Chang ALS, Bitter PH, Qu K, Lin M, Rapicavoli NA, Chang HY. Rejuvenation of gene expression pattern of aged human skin by broadband light treatment: a pilot study. J Invest Dermatol. 2013;133:394–402. https://doi.org/10.1038/jid.2012.287.

    Article  PubMed  CAS  Google Scholar 

  73. Sand M, Bechara FG, Sand D, Gambichler T, Hahn SA, Bromba M, Stockfleth E, Hessam S. Long-noncoding RNAs in basal cell carcinoma. Tumour Biol. 2016;37:10595–608. https://doi.org/10.1007/s13277-016-4927-z.

    Article  PubMed  CAS  Google Scholar 

  74. Wang S, Fan W, Wan B, Tu M, Jin F, Liu F, Xu H, Han P. Characterization of long noncoding RNA and messenger RNA signatures in melanoma tumorigenesis and metastasis. PLoS One. 2017;12:e0172498. https://doi.org/10.1371/journal.pone.0172498.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Piipponen M, Nissinen L, Farshchian M, Riihilä P, Kivisaari A, Kallajoki M, Peltonen J, Peltonen S, Kähäri V-M. Long noncoding RNA PICSAR promotes growth of cutaneous squamous cell carcinoma by regulating ERK1/2 activity. J Invest Dermatol. 2016;136:1701–10. https://doi.org/10.1016/j.jid.2016.03.028.

    Article  PubMed  CAS  Google Scholar 

  76. Ponzio G, Rezzonico R, Bourget I, Allan R, Nottet N, Popa A, Magnone V, Rios G, Mari B, Barbry P. A new long noncoding RNA (LncRNA) is induced in cutaneous squamous cell carcinoma and downregulates several anticancer and cell-differentiation genes in mouse. J Biol Chem. 2017. https://doi.org/10.1074/jbc.M117.776260.

  77. Wang Z, Jinnin M, Nakamura K, Harada M, Kudo H, Nakayama W, Inoue K, Nakashima T, Honda N, Fukushima S, Ihn H. Long non-coding RNA TSIX is upregulated in scleroderma dermal fibroblasts and controls collagen mRNA stabilization. Exp Dermatol. 2016;25:131–6. https://doi.org/10.1111/exd.12900.

    Article  PubMed  CAS  Google Scholar 

  78. Sun X-J, Wang Q, Guo B, Liu X-Y, Wang B. Identification of skin-related lncRNAs as potential biomarkers that involved in Wnt pathways in keloids. Oncotarget. 2017;8:34236–44. https://doi.org/10.18632/oncotarget.15880.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Gupta R, Ahn R, Lai K, Mullins E, Debbaneh M, Dimon M, Arron S, Liao W. Landscape of long noncoding RNAs in psoriatic and healthy skin. J Invest Dermatol. 2016;136:603–9. https://doi.org/10.1016/j.jid.2015.12.009.

    Article  PubMed  CAS  Google Scholar 

  80. Chu CC, Qu KK, Zhong FLF, Artandi SES, Chang HYH. Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol Cell. 2011;44:667–78. https://doi.org/10.1016/j.molcel.2011.08.027.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Siprashvili Z, Webster DE, Kretz M, Johnston D, Rinn JL, Chang HY, Khavari PA. Identification of proteins binding coding and non-coding human RNAs using protein microarrays. BMC Genomics. 2012;13:633. https://doi.org/10.1186/1471-2164-13-633.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard Y. Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, K.C., Chang, H.Y. (2018). Long Noncoding RNA and Its Role in the Control of Gene Expression in the Skin. In: Botchkarev, V., Millar, S. (eds) Epigenetic Regulation of Skin Development and Regeneration. Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-16769-5_8

Download citation

Publish with us

Policies and ethics