Advertisement

Histone Deacetylase Functions in Epidermal Development, Homeostasis and Cancer

  • Donna M. Brennan-Crispi
  • Sarah E. MillarEmail author
Chapter
  • 399 Downloads
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)

Abstract

Epigenetic mechanisms are essential for governing gene transcription and are vital to proper tissue development and homeostasis. Conversely, deregulation of these mechanisms can lead to disease development and progression. Histone deacetylases (HDACs) form a critical family of enzymes that remodel chromatin by removing acetylation marks from histone tails, causing chromatin compaction and a repressive transcriptional environment. HDACs can also remove acetyl moieties from other protein targets, including a subset of transcription factors, resulting in their altered stability and/or activity. Together, these functions allow HDACs to affect diverse cellular processes and direct cell fate. Global and tissue-specific deletion of individual Hdac genes in genetic mouse models has revealed their in vivo requirements for normal embryonic development and adult tissue functions. In this chapter we will discuss the roles played by HDACs in epithelial cells of the skin, an accessible model system for studying cell fate decisions during development, homeostasis, and disease.

Keywords

histone deacetylase epidermis hair follicle basal cell carcinoma squamous cell carcinoma 

Notes

Acknowledgements

The authors thank Fang Liu for critically reading this manuscript.

References

  1. 1.
    Aghdassi A, Sendler M, Guenther A, Mayerle J, Behn CO, Heidecke CD, Friess H, Buchler M, Evert M, Lerch MM, et al. Recruitment of histone deacetylases HDAC1 and HDAC2 by the transcriptional repressor ZEB1 downregulates E-cadherin expression in pancreatic cancer. Gut. 2012;61:439–48.PubMedCrossRefGoogle Scholar
  2. 2.
    Ahmad W, Faiyaz ul Haque M, Brancolini V, Tsou HC, ul Haque S, Lam H, Aita VM, Owen J, deBlaquiere M, Frank J, et al. Alopecia universalis associated with a mutation in the human hairless gene. Science (New York). 1998;279:720–4.CrossRefGoogle Scholar
  3. 3.
    Allfrey VG, Faulkner R, Mirsky AE. Acetylation And Methylation Of Histones And Their Possible Role In The Regulation Of Rna Synthesis. Proc Natl Acad Sci USA. 1964;51:786–94.PubMedCrossRefGoogle Scholar
  4. 4.
    Alonso L, Fuchs E. The hair cycle. J Cell Sci. 2006;119:391–3.PubMedCrossRefGoogle Scholar
  5. 5.
    Amin SH, Motamedi KK, Ochsner MC, Song TE, Hybarger CP. Mechanisms and efficacy of vismodegib in the treatment of basal cell carcinoma. Discov Med. 2013;16:229–32.PubMedGoogle Scholar
  6. 6.
    Arce L, Pate KT, Waterman ML. Groucho binds two conserved regions of LEF-1 for HDAC-dependent repression. BMC Cancer. 2009;9:159.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Athar M, Tang X, Lee JL, Kopelovich L, Kim AL. Hedgehog signalling in skin development and cancer. Exp Dermatol. 2006;15:667–77.PubMedCrossRefGoogle Scholar
  8. 8.
    Bae GY, Choi SJ, Lee JS, Jo J, Lee J, Kim J, Cha HJ. Loss of E-cadherin activates EGFR-MEK/ERK signaling, which promotes invasion via the ZEB1/MMP2 axis in non-small cell lung cancer. Oncotarget. 2013;4:2512–22.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Bantscheff M, Hopf C, Savitski MM, Dittmann A, Grandi P, Michon AM, Schlegl J, Abraham Y, Becher I, Bergamini G, et al. Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes. Nat Biotechnol. 2011;29:255–65.PubMedCrossRefGoogle Scholar
  10. 10.
    Basta J, Rauchman M. The nucleosome remodeling and deacetylase complex in development and disease. Transl Res. 2015;165:36–47.PubMedCrossRefGoogle Scholar
  11. 11.
    Baymaz HI, Karemaker ID, Vermeulen M. Perspective on unraveling the versatility of ‘co-repressor’ complexes. Biochim Biophys Acta. 2015;1849:1051–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Beck B, Blanpain C. Mechanisms regulating epidermal stem cells. EMBO J. 2012;31:2067–75.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Bejar C, Maubec E. Therapy of advanced squamous cell carcinoma of the skin. Curr Treat Options in Oncol. 2014;15:302–20.CrossRefGoogle Scholar
  14. 14.
    Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes Dev. 2009;23:781–3.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Bhaskara S, Chyla BJ, Amann JM, Knutson SK, Cortez D, Sun ZW, Hiebert SW. Deletion of histone deacetylase 3 reveals critical roles in S phase progression and DNA damage control. Mol Cell. 2008;30:61–72.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Bheda P, Schneider R. Epigenetics reloaded: the single-cell revolution. Trends Cell Biol. 2014;24:712–23.PubMedCrossRefGoogle Scholar
  17. 17.
    Blanpain C. Tracing the cellular origin of cancer. Nat Cell Biol. 2013;15:126–34.PubMedCrossRefGoogle Scholar
  18. 18.
    Blanpain C, Fuchs E. Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol. 2009;10:207–17.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Blanpain C, Lowry WE, Pasolli HA, Fuchs E. Canonical notch signaling functions as a commitment switch in the epidermal lineage. Genes Dev. 2006;20:3022–35.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Bochkis IM, Przybylski D, Chen J, Regev A. Changes in nucleosome occupancy associated with metabolic alterations in aged mammalian liver. Cell Rep. 2014;9:996–1006.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Bosch-Presegue L, Vaquero A. Sirtuin-dependent epigenetic regulation in the maintenance of genome integrity. FEBS J. 2015;282:1745–67.PubMedCrossRefGoogle Scholar
  22. 22.
    Botchkarev VA. Integration of the Transcription Factor-Regulated and Epigenetic Mechanisms in the Control of Keratinocyte Differentiation. J Investig Dermatol Symp Proc. 2015;17:30–2.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Botchkarev VA, Gdula MR, Mardaryev AN, Sharov AA, Fessing MY. Epigenetic regulation of gene expression in keratinocytes. J Invest Dermatol. 2012;132:2505–21.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Botchkarev VA, Sharov AA. BMP signaling in the control of skin development and hair follicle growth. Differentiation. 2004;72:512–26.PubMedCrossRefGoogle Scholar
  25. 25.
    Brehm A, Miska EA, McCance DJ, Reid JL, Bannister AJ, Kouzarides T. Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature. 1998;391:597–601.PubMedCrossRefGoogle Scholar
  26. 26.
    Brownell JE, Zhou J, Ranalli T, Kobayashi R, Edmondson DG, Roth SY, Allis CD. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell. 1996;84:843–51.PubMedCrossRefGoogle Scholar
  27. 27.
    Byrne C, Tainsky M, Fuchs E. Programming gene expression in developing epidermis. Development. 1994;120:2369–83.PubMedGoogle Scholar
  28. 28.
    Campos EI, Reinberg D. Histones: annotating chromatin. Annu Rev Genet. 2009;43:559–99.PubMedCrossRefGoogle Scholar
  29. 29.
    Candi E, Rufini A, Terrinoni A, Dinsdale D, Ranalli M, Paradisi A, De Laurenzi V, Spagnoli LG, Catani MV, Ramadan S, et al. Differential roles of p63 isoforms in epidermal development: selective genetic complementation in p63 null mice. Cell Death Differ. 2006;13:1037–47.PubMedCrossRefGoogle Scholar
  30. 30.
    Canettieri G, Di Marcotullio L, Greco A, Coni S, Antonucci L, Infante P, Pietrosanti L, De Smaele E, Ferretti E, Miele E, et al. Histone deacetylase and Cullin3-REN(KCTD11) ubiquitin ligase interplay regulates Hedgehog signalling through Gli acetylation. Nat Cell Biol. 2010;12:132–42.PubMedCrossRefGoogle Scholar
  31. 31.
    Chalkiadaki A, Guarente L. The multifaceted functions of sirtuins in cancer. Nat Rev Cancer. 2015;15:608–24.PubMedCrossRefGoogle Scholar
  32. 32.
    Chang HH, Chiang CP, Hung HC, Lin CY, Deng YT, Kuo MY. Histone deacetylase 2 expression predicts poorer prognosis in oral cancer patients. Oral Oncol. 2009;45:610–4.PubMedCrossRefGoogle Scholar
  33. 33.
    Chen S, Bellew C, Yao X, Stefkova J, Dipp S, Saifudeen Z, Bachvarov D, El-Dahr SS. Histone deacetylase (HDAC) activity is critical for embryonic kidney gene expression, growth, and differentiation. J Biol Chem. 2011a;286:32775–89.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Chen X, Xiao W, Chen W, Luo L, Ye S, Liu Y. The epigenetic modifier trichostatin A, a histone deacetylase inhibitor, suppresses proliferation and epithelial-mesenchymal transition of lens epithelial cells. Cell Death Dis. 2013;4:e884.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Chen Y, Wang H, Yoon SO, Xu X, Hottiger MO, Svaren J, Nave KA, Kim HA, Olson EN, Lu QR. HDAC-mediated deacetylation of NF-kappaB is critical for Schwann cell myelination. Nat Neurosci. 2011b;14:437–41.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Choi JE, Mostoslavsky R. Sirtuins, metabolism, and DNA repair. Curr Opin Genet Dev. 2014;26:24–32.PubMedCrossRefGoogle Scholar
  37. 37.
    Choi YS, Zhang Y, Xu M, Yang Y, Ito M, Peng T, Cui Z, Nagy A, Hadjantonakis AK, Lang RA, et al. Distinct functions for Wnt/beta-catenin in hair follicle stem cell proliferation and survival and interfollicular epidermal homeostasis. Cell Stem Cell. 2013;13:720–33.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Choudhary V, Olala LO, Kagha K, Pan ZQ, Chen X, Yang R, Cline A, Helwa I, Marshall L, Kaddour-Djebbar I, et al. Regulation of the glycerol transporter, aquaporin-3, by histone deacetylase-3 and p53 in keratinocytes. J Investig Dermatol. 2017;137:1935.PubMedCrossRefGoogle Scholar
  39. 39.
    Chuang HC, Chang CW, Chang GD, Yao TP, Chen H. Histone deacetylase 3 binds to and regulates the GCMa transcription factor. Nucleic Acids Res. 2006;34:1459–69.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Chun SG, Park H, Pandita RK, Horikoshi N, Pandita TK, Schwartz DL, Yordy JS. Targeted inhibition of histone deacetylases and hedgehog signaling suppress tumor growth and homologous recombination in aerodigestive cancers. Am J Cancer Res. 2015;5:1337–52.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Chun SG, Zhou W, Yee NS. Combined targeting of histone deacetylases and hedgehog signaling enhances cytoxicity in pancreatic cancer. Cancer Biol Ther. 2009;8:1328–39.PubMedCrossRefGoogle Scholar
  42. 42.
    Clapier CR, Cairns BR. The biology of chromatin remodeling complexes. Annu Rev Biochem. 2009;78:273–304.PubMedCrossRefGoogle Scholar
  43. 43.
    Cotsarelis G, Millar SE. Towards a molecular understanding of hair loss and its treatment. Trends Mol Med. 2001;7:293–301.PubMedCrossRefGoogle Scholar
  44. 44.
    Cowger JJ, Torchia J. Direct association between the CREB-binding protein (CBP) and nuclear receptor corepressor (N-CoR). Biochemistry. 2006;45:13150–62.PubMedCrossRefGoogle Scholar
  45. 45.
    Cowley SM, Iritani BM, Mendrysa SM, Xu T, Cheng PF, Yada J, Liggitt HD, Eisenman RN. The mSin3A chromatin-modifying complex is essential for embryogenesis and T-cell development. Mol Cell Biol. 2005;25:6990–7004.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Cremer T, Cremer C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet. 2001;2:292–301.PubMedCrossRefGoogle Scholar
  47. 47.
    Dai P, Shinagawa T, Nomura T, Harada J, Kaul SC, Wadhwa R, Khan MM, Akimaru H, Sasaki H, Colmenares C, et al. Ski is involved in transcriptional regulation by the repressor and full-length forms of Gli3. Genes Dev. 2002;16:2843–8.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Dassule HR, Lewis P, Bei M, Maas R, McMahon AP. Sonic hedgehog regulates growth and morphogenesis of the tooth. Development. 2000;127:4775–85.PubMedGoogle Scholar
  49. 49.
    David G, Grandinetti KB, Finnerty PM, Simpson N, Chu GC, Depinho RA. Specific requirement of the chromatin modifier mSin3B in cell cycle exit and cellular differentiation. Proc Natl Acad Sci USA. 2008;105:4168–72.PubMedCrossRefGoogle Scholar
  50. 50.
    de Guzman Strong C, Wertz PW, Wang C, Yang F, Meltzer PS, Andl T, Millar SE, Ho IC, Pai SY, Segre JA. Lipid defect underlies selective skin barrier impairment of an epidermal-specific deletion of Gata-3. J Cell Biol. 2006;175:661–70.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Denning MF, Dlugosz AA, Williams EK, Szallasi Z, Blumberg PM, Yuspa SH. Specific protein kinase C isozymes mediate the induction of keratinocyte differentiation markers by calcium. Cell Growth Differ. 1995;6:149–57.PubMedGoogle Scholar
  52. 52.
    Djabali K, Christiano AM. Hairless contains a novel nuclear matrix targeting signal and associates with histone deacetylase 3 in nuclear speckles. Differentiation. 2004;72:410–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Dlugosz A, Agrawal S, Kirkpatrick P. Vismodegib. Nat Rev Drug Discov. 2012;11:437–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Dlugosz AA, Yuspa SH. Protein kinase C regulates keratinocyte transglutaminase (TGK) gene expression in cultured primary mouse epidermal keratinocytes induced to terminally differentiate by calcium. J Invest Dermatol. 1994;102:409–14.PubMedCrossRefGoogle Scholar
  55. 55.
    Dokmanovic M, Perez G, Xu W, Ngo L, Clarke C, Parmigiani RB, Marks PA. Histone deacetylase inhibitors selectively suppress expression of HDAC7. Mol Cancer Ther. 2007;6:2525–34.PubMedCrossRefGoogle Scholar
  56. 56.
    el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B. WAF1, a potential mediator of p53 tumor suppression. Cell. 1993;75:817–25.PubMedCrossRefGoogle Scholar
  57. 57.
    Elias PM, Nau P, Hanley K, Cullander C, Crumrine D, Bench G, Sideras-Haddad E, Mauro T, Williams ML, Feingold KR. Formation of the epidermal calcium gradient coincides with key milestones of barrier ontogenesis in the rodent. J Invest Dermatol. 1998;110:399–404.PubMedCrossRefGoogle Scholar
  58. 58.
    Epstein EH. Basal cell carcinomas: attack of the hedgehog. Nat Rev Cancer. 2008;8:743–54.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Eskiw CH, Cope NF, Clay I, Schoenfelder S, Nagano T, Fraser P. Transcription factories and nuclear organization of the genome. Cold Spring Harb Symp Quant Biol. 2010;75:501–6.PubMedCrossRefGoogle Scholar
  60. 60.
    Fabian J, Lodrini M, Oehme I, Schier MC, Thole TM, Hielscher T, Kopp-Schneider A, Opitz L, Capper D, von Deimling A, et al. GRHL1 acts as tumor suppressor in neuroblastoma and is negatively regulated by MYCN and HDAC3. Cancer Res. 2014;74:2604–16.PubMedCrossRefGoogle Scholar
  61. 61.
    Fajas L, Egler V, Reiter R, Hansen J, Kristiansen K, Debril MB, Miard S, Auwerx J. The retinoblastoma-histone deacetylase 3 complex inhibits PPARgamma and adipocyte differentiation. Dev Cell. 2002;3:903–10.PubMedCrossRefGoogle Scholar
  62. 62.
    Falkenberg KJ, Johnstone RW. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov. 2014;13:673–91.PubMedCrossRefGoogle Scholar
  63. 63.
    Feng J, Cen J, Li J, Zhao R, Zhu C, Wang Z, Xie J, Tang W. Histone deacetylase inhibitor valproic acid (VPA) promotes the epithelial mesenchymal transition of colorectal cancer cells via up regulation of Snail. Cell Adhes Migr. 2015;9:495–501.CrossRefGoogle Scholar
  64. 64.
    Feng S, Jacobsen SE, Reik W. Epigenetic reprogramming in plant and animal development. Science (New York). 2010;330:622–7.CrossRefGoogle Scholar
  65. 65.
    Fischle W, Dequiedt F, Hendzel MJ, Guenther MG, Lazar MA, Voelter W, Verdin E. Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Mol Cell. 2002;9:45–57.PubMedCrossRefGoogle Scholar
  66. 66.
    Fischle W, Kiermer V, Dequiedt F, Verdin E. The emerging role of class II histone deacetylases. Biochem Cell Biol. 2001;79:337–48.PubMedCrossRefGoogle Scholar
  67. 67.
    Frye M, Fisher AG, Watt FM. Epidermal stem cells are defined by global histone modifications that are altered by Myc-induced differentiation. PLoS One. 2007;2:e763.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Fuchs E. Scratching the surface of skin development. Nature. 2007;445:834–42.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Fujita N, Jaye DL, Kajita M, Geigerman C, Moreno CS, Wade PA. MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell. 2003;113:207–19.PubMedCrossRefGoogle Scholar
  70. 70.
    Gao L, Cueto MA, Asselbergs F, Atadja P. Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J Biol Chem. 2002;277:25748–55.PubMedCrossRefGoogle Scholar
  71. 71.
    Giudice FS, Pinto DS Jr, Nor JE, Squarize CH, Castilho RM. Inhibition of histone deacetylase impacts cancer stem cells and induces epithelial-mesenchyme transition of head and neck cancer. PLoS One. 2013;8:e58672.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Gloire G, Horion J, El Mjiyad N, Bex F, Chariot A, Dejardin E, Piette J. Promoter-dependent effect of IKKalpha on NF-kappaB/p65 DNA binding. J Biol Chem. 2007;282:21308–18.PubMedCrossRefGoogle Scholar
  73. 73.
    Glozak MA, Seto E. Histone deacetylases and cancer. Oncogene. 2007;26:5420–32.CrossRefPubMedGoogle Scholar
  74. 74.
    Grachtchouk M, Mo R, Yu S, Zhang X, Sasaki H, Hui CC, Dlugosz AA. Basal cell carcinomas in mice overexpressing Gli2 in skin. Nat Genet. 2000;24:216–7.PubMedCrossRefGoogle Scholar
  75. 75.
    Grachtchouk V, Grachtchouk M, Lowe L, Johnson T, Wei L, Wang A, de Sauvage F, Dlugosz AA. The magnitude of hedgehog signaling activity defines skin tumor phenotype. EMBO J. 2003;22:2741–51.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Greer CB, Tanaka Y, Kim YJ, Xie P, Zhang MQ, Park IH, Kim TH. Histone Deacetylases Positively Regulate Transcription through the Elongation Machinery. Cell Rep. 2015;13:1444–55.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Gregoire S, Xiao L, Nie J, Zhang X, Xu M, Li J, Wong J, Seto E, Yang XJ. Histone deacetylase 3 interacts with and deacetylates myocyte enhancer factor 2. Mol Cell Biol. 2007;27:1280–95.PubMedCrossRefGoogle Scholar
  78. 78.
    Grigoryan T, Wend P, Klaus A, Birchmeier W. Deciphering the function of canonical Wnt signals in development and disease: conditional loss- and gain-of-function mutations of beta-catenin in mice. Genes Dev. 2008;22:2308–41.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Grozinger CM, Schreiber SL. Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3-dependent cellular localization. Proc Natl Acad Sci USA. 2000;97:7835–40.PubMedCrossRefGoogle Scholar
  80. 80.
    Guardiola AR, Yao TP. Molecular cloning and characterization of a novel histone deacetylase HDAC10. J Biol Chem. 2002;277:3350–6.PubMedCrossRefGoogle Scholar
  81. 81.
    Gupta M, Han JJ, Stenson M, Wellik L, Witzig TE. Regulation of STAT3 by histone deacetylase-3 in diffuse large B-cell lymphoma: implications for therapy. Leukemia. 2012;26:1356–64.PubMedCrossRefGoogle Scholar
  82. 82.
    Haberland M, Mokalled MH, Montgomery RL, Olson EN. Epigenetic control of skull morphogenesis by histone deacetylase 8. Genes Dev. 2009a;23:1625–30.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Haberland M, Montgomery RL, Olson EN. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet. 2009b;10:32–42.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Hagelkruys A, Mattes K, Moos V, Rennmayr M, Ringbauer M, Sawicka A, Seiser C. Essential Nonredundant Function of the Catalytic Activity of Histone Deacetylase 2 in Mouse Development. Mol Cell Biol. 2016;36:462–74.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Hansen LA, Alexander N, Hogan ME, Sundberg JP, Dlugosz A, Threadgill DW, Magnuson T, Yuspa SH. Genetically null mice reveal a central role for epidermal growth factor receptor in the differentiation of the hair follicle and normal hair development. Am J Pathol. 1997;150:1959–75.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Hardcastle Z, Mo R, Hui CC, Sharpe PT. The Shh signalling pathway in tooth development: defects in Gli2 and Gli3 mutants. Development. 1998;125:2803–11.PubMedGoogle Scholar
  87. 87.
    Harris LG, Wang SH, Mani SK, Kasiganesan H, Chou CJ, Menick DR. Evidence for a non-canonical role of HDAC5 in regulation of the cardiac Ncx1 and Bnp genes. Nucleic Acids Res. 2016;44:3610–7.PubMedCrossRefGoogle Scholar
  88. 88.
    Hayashi M, Nimura K, Kashiwagi K, Harada T, Takaoka K, Kato H, Tamai K, Kaneda Y. Comparative roles of Twist-1 and Id1 in transcriptional regulation by BMP signaling. J Cell Sci. 2007;120:1350–7.PubMedCrossRefGoogle Scholar
  89. 89.
    Hendrich B, Bird A. Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol. 1998;18:6538–47.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Hendrich B, Guy J, Ramsahoye B, Wilson VA, Bird A. Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development. Genes Dev. 2001;15:710–23.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Hermeking H, Lengauer C, Polyak K, He TC, Zhang L, Thiagalingam S, Kinzler KW, Vogelstein B. 14-3-3sigma is a p53-regulated inhibitor of G2/M progression. Mol Cell. 1997;1:3–11.PubMedCrossRefGoogle Scholar
  92. 92.
    Herron BJ, Liddell RA, Parker A, Grant S, Kinne J, Fisher JK, Siracusa LD. A mutation in stratifin is responsible for the repeated epilation (Er) phenotype in mice. Nat Genet. 2005;37:1210–2.PubMedCrossRefGoogle Scholar
  93. 93.
    Higashitsuji H, Higashitsuji H, Masuda T, Liu Y, Itoh K, Fujita J. Enhanced deacetylation of p53 by the anti-apoptotic protein HSCO in association with histone deacetylase 1. J Biol Chem. 2007;282:13716–25.PubMedCrossRefGoogle Scholar
  94. 94.
    Houtkooper RH, Pirinen E, Auwerx J. Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol. 2012;13:225–38.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Hua G, Ganti KP, Chambon P. Glucocorticoid-induced tethered transrepression requires SUMOylation of GR and formation of a SUMO-SMRT/NCoR1-HDAC3 repressing complex. Proc Natl Acad Sci USA. 2016a;113:E635–43.PubMedCrossRefGoogle Scholar
  96. 96.
    Hua G, Paulen L, Chambon P. GR SUMOylation and formation of an SUMO-SMRT/NCoR1-HDAC3 repressing complex is mandatory for GC-induced IR nGRE-mediated transrepression. Proc Natl Acad Sci USA. 2016b;113:E626–34.PubMedCrossRefGoogle Scholar
  97. 97.
    Huang PH, Chen CH, Chou CC, Sargeant AM, Kulp SK, Teng CM, Byrd JC, Chen CS. Histone deacetylase inhibitors stimulate histone H3 lysine 4 methylation in part via transcriptional repression of histone H3 lysine 4 demethylases. Mol Pharmacol. 2011;79:197–206.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Huang Y, Chen J, Lu C, Han J, Wang G, Song C, Zhu S, Wang C, Li G, Kang J, et al. HDAC1 and Klf4 interplay critically regulates human myeloid leukemia cell proliferation. Cell Death Dis. 2014;5:e1491.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Hughes MW, Jiang TX, Lin SJ, Leung Y, Kobielak K, Widelitz RB, Chuong CM. Disrupted ectodermal organ morphogenesis in mice with a conditional histone deacetylase 1, 2 deletion in the epidermis. J Invest Dermatol. 2014;134:24–32.PubMedCrossRefGoogle Scholar
  100. 100.
    Huh SH, Narhi K, Lindfors PH, Haara O, Yang L, Ornitz DM, Mikkola ML. Fgf20 governs formation of primary and secondary dermal condensations in developing hair follicles. Genes Dev. 2013;27:450–8.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Ingraham CR, Kinoshita A, Kondo S, Yang B, Sajan S, Trout KJ, Malik MI, Dunnwald M, Goudy SL, Lovett M, et al. Abnormal skin, limb and craniofacial morphogenesis in mice deficient for interferon regulatory factor 6 (Irf6). Nat Genet. 2006;38:1335–40.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Ito A, Kawaguchi Y, Lai CH, Kovacs JJ, Higashimoto Y, Appella E, Yao TP. MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation. EMBO J. 2002;21:6236–45.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Ito K, Yamamura S, Essilfie-Quaye S, Cosio B, Ito M, Barnes PJ, Adcock IM. Histone deacetylase 2-mediated deacetylation of the glucocorticoid receptor enables NF-kappaB suppression. J Exp Med. 2006;203:7–13.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Ivanova IA, D’Souza SJ, Dagnino L. Signalling in the epidermis: the E2F cell cycle regulatory pathway in epidermal morphogenesis, regeneration and transformation. Int J Biol Sci. 2005;1:87–95.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Jacob C, Christen CN, Pereira JA, Somandin C, Baggiolini A, Lotscher P, Ozcelik M, Tricaud N, Meijer D, Yamaguchi T, et al. HDAC1 and HDAC2 control the transcriptional program of myelination and the survival of Schwann cells. Nat Neurosci. 2011;14:429–36.PubMedCrossRefGoogle Scholar
  106. 106.
    Jaubert J, Cheng J, Segre JA. Ectopic expression of kruppel like factor 4 (Klf4) accelerates formation of the epidermal permeability barrier. Development. 2003;130:2767–77.PubMedCrossRefGoogle Scholar
  107. 107.
    Jensen ED, Schroeder TM, Bailey J, Gopalakrishnan R, Westendorf JJ. Histone deacetylase 7 associates with Runx2 and represses its activity during osteoblast maturation in a deacetylation-independent manner. J Bone Miner Res. 2008;23:361–72.PubMedCrossRefGoogle Scholar
  108. 108.
    Jepsen K, Solum D, Zhou T, McEvilly RJ, Kim HJ, Glass CK, Hermanson O, Rosenfeld MG. SMRT-mediated repression of an H3K27 demethylase in progression from neural stem cell to neuron. Nature. 2007;450:415–9.PubMedCrossRefGoogle Scholar
  109. 109.
    Jessen BA, Phillips MA, Hovnanian A, Rice RH. Role of Sp1 response element in transcription of the human transglutaminase 1 gene. J Invest Dermatol. 2000;115:113–7.PubMedCrossRefGoogle Scholar
  110. 110.
    Ji M, Lee EJ, Kim KB, Kim Y, Sung R, Lee SJ, Kim DS, Park SM. HDAC inhibitors induce epithelial-mesenchymal transition in colon carcinoma cells. Oncol Rep. 2015;33:2299–308.PubMedCrossRefGoogle Scholar
  111. 111.
    Jiang X, Ye X, Guo W, Lu H, Gao Z. Inhibition of HDAC3 promotes ligand-independent PPARgamma activation by protein acetylation. J Mol Endocrinol. 2014;53:191–200.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Juan LJ, Shia WJ, Chen MH, Yang WM, Seto E, Lin YS, Wu CW. Histone deacetylases specifically down-regulate p53-dependent gene activation. J Biol Chem. 2000;275:20436–43.PubMedCrossRefGoogle Scholar
  113. 113.
    Kadamb R, Mittal S, Bansal N, Batra H, Saluja D. Sin3: insight into its transcription regulatory functions. Eur J Cell Biol. 2013;92:237–46.PubMedCrossRefGoogle Scholar
  114. 114.
    Kamijo T, Weber JD, Zambetti G, Zindy F, Roussel MF, Sherr CJ. Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc Natl Acad Sci USA. 1998;95:8292–7.PubMedCrossRefGoogle Scholar
  115. 115.
    Kao HY, Ordentlich P, Koyano-Nakagawa N, Tang Z, Downes M, Kintner CR, Evans RM, Kadesch T. A histone deacetylase corepressor complex regulates the Notch signal transduction pathway. Genes Dev. 1998;12:2269–77.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Kashiwagi M, Morgan BA, Georgopoulos K. The chromatin remodeler Mi-2beta is required for establishment of the basal epidermis and normal differentiation of its progeny. Development. 2007;134:1571–82.PubMedCrossRefGoogle Scholar
  117. 117.
    Kelly RD, Cowley SM. The physiological roles of histone deacetylase (HDAC) 1 and 2: complex co-stars with multiple leading parts. Biochem Soc Trans. 2013;41:741–9.PubMedCrossRefGoogle Scholar
  118. 118.
    Khan N, Jeffers M, Kumar S, Hackett C, Boldog F, Khramtsov N, Qian X, Mills E, Berghs SC, Carey N, et al. Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. Biochem J. 2008;409:581–9.PubMedCrossRefGoogle Scholar
  119. 119.
    Kleff S, Andrulis ED, Anderson CW, Sternglanz R. Identification of a gene encoding a yeast histone H4 acetyltransferase. J Biol Chem. 1995;270:24674–7.PubMedCrossRefGoogle Scholar
  120. 120.
    Knutson SK, Chyla BJ, Amann JM, Bhaskara S, Huppert SS, Hiebert SW. Liver-specific deletion of histone deacetylase 3 disrupts metabolic transcriptional networks. EMBO J. 2008;27:1017–28.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Kobielak K, Pasolli HA, Alonso L, Polak L, Fuchs E. Defining BMP functions in the hair follicle by conditional ablation of BMP receptor IA. J Cell Biol. 2003;163:609–23.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Koster MI, Dai D, Marinari B, Sano Y, Costanzo A, Karin M, Roop DR. p63 induces key target genes required for epidermal morphogenesis. Proc Natl Acad Sci USA. 2007;104:3255–60.PubMedCrossRefGoogle Scholar
  123. 123.
    Koster MI, Roop DR. p63 and epithelial appendage development. Differentiation. 2004;72:364–70.PubMedCrossRefGoogle Scholar
  124. 124.
    Koster MI, Roop DR. Mechanisms regulating epithelial stratification. Annu Rev Cell Dev Biol. 2007;23:93–113.PubMedCrossRefGoogle Scholar
  125. 125.
    Lagger G, O’Carroll D, Rembold M, Khier H, Tischler J, Weitzer G, Schuettengruber B, Hauser C, Brunmeir R, Jenuwein T, et al. Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. EMBO J. 2002;21:2672–81.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Lahm A, Paolini C, Pallaoro M, Nardi MC, Jones P, Neddermann P, Sambucini S, Bottomley MJ, Lo Surdo P, Carfi A, et al. Unraveling the hidden catalytic activity of vertebrate class IIa histone deacetylases. Proc Natl Acad Sci USA. 2007;104:17335–40.PubMedCrossRefGoogle Scholar
  127. 127.
    Lai AY, Wade PA. Cancer biology and NuRD: a multifaceted chromatin remodelling complex. Nat Rev Cancer. 2011;11:588–96.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Lai PH, Wang WL, Ko CY, Lee YC, Yang WM, Shen TW, Chang WC, Wang JM. HDAC1/HDAC3 modulates PPARG2 transcription through the sumoylated CEBPD in hepatic lipogenesis. Biochim Biophys Acta. 2008;1783:1803–14.PubMedCrossRefGoogle Scholar
  129. 129.
    Laurikkala J, Mikkola ML, James M, Tummers M, Mills AA, Thesleff I. p63 regulates multiple signalling pathways required for ectodermal organogenesis and differentiation. Development. 2006;133:1553–63.PubMedCrossRefGoogle Scholar
  130. 130.
    Lawrence M, Daujat S, Schneider R. Lateral thinking: how histone modifications regulate gene expression. Trends Genet. 2016;32:42–56.PubMedCrossRefGoogle Scholar
  131. 131.
    LeBoeuf M, Terrell A, Trivedi S, Sinha S, Epstein JA, Olson EN, Morrisey EE, Millar SE. Hdac1 and Hdac2 act redundantly to control p63 and p53 functions in epidermal progenitor cells. Dev Cell. 2010;19:807–18.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Lechler T, Fuchs E. Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature. 2005;437:275–80.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Lee CS, Bhaduri A, Mah A, Johnson WL, Ungewickell A, Aros CJ, Nguyen CB, Rios EJ, Siprashvili Z, Straight A, et al. Recurrent point mutations in the kinetochore gene KNSTRN in cutaneous squamous cell carcinoma. Nat Genet. 2014;46:1060–2.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Lee J, Tumbar T. Hairy tale of signaling in hair follicle development and cycling. Semin Cell Dev Biol. 2012;23:906–16.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Lee MG, Wynder C, Bochar DA, Hakimi MA, Cooch N, Shiekhattar R. Functional interplay between histone demethylase and deacetylase enzymes. Mol Cell Biol. 2006;26:6395–402.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Lee SJ, Lindsey S, Graves B, Yoo S, Olson JM, Langhans SA. Sonic hedgehog-induced histone deacetylase activation is required for cerebellar granule precursor hyperplasia in medulloblastoma. PLoS One. 2013;8:e71455.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Lei W, Zhang K, Pan X, Hu Y, Wang D, Yuan X, Shu G, Song J. Histone deacetylase 1 is required for transforming growth factor-beta1-induced epithelial-mesenchymal transition. Int J Biochem Cell Biol. 2010;42:1489–97.PubMedCrossRefGoogle Scholar
  138. 138.
    Li D, Wang X, Ren W, Ren J, Lan X, Wang F, Li H, Zhang F, Han Y, Song T, et al. High expression of liver histone deacetylase 3 contributes to high-fat-diet-induced metabolic syndrome by suppressing the PPAR-gamma and LXR-alpha-pathways in E3 rats. Mol Cell Endocrinol. 2011;344:69–80.PubMedCrossRefGoogle Scholar
  139. 139.
    Li Q, Lu Q, Estepa G, Verma IM. Identification of 14-3-3sigma mutation causing cutaneous abnormality in repeated-epilation mutant mouse. Proc Natl Acad Sci USA. 2005;102:15977–82.PubMedCrossRefGoogle Scholar
  140. 140.
    Liao M, Zhang Y, Dufau ML. Protein kinase Calpha-induced derepression of the human luteinizing hormone receptor gene transcription through ERK-mediated release of HDAC1/Sin3A repressor complex from Sp1 sites. Mol Endocrinol (Baltimore). 2008;22:1449–63.CrossRefGoogle Scholar
  141. 141.
    Lien WH, Fuchs E. Wnt some lose some: transcriptional governance of stem cells by Wnt/beta-catenin signaling. Genes Dev. 2014;28:1517–32.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Lin KT, Wang YW, Chen CT, Ho CM, Su WH, Jou YS. HDAC inhibitors augmented cell migration and metastasis through induction of PKCs leading to identification of low toxicity modalities for combination cancer therapy. Clin Cancer Res. 2012;18:4691–701.PubMedCrossRefGoogle Scholar
  143. 143.
    Liu H, Hu Q, Kaufman A, D’Ercole AJ, Ye P. Developmental expression of histone deacetylase 11 in the murine brain. J Neurosci Res. 2008;86:537–43.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Loyola A, Almouzni G. Histone chaperones, a supporting role in the limelight. Biochim Biophys Acta. 2004;1677:3–11.PubMedCrossRefGoogle Scholar
  145. 145.
    Lu J, McKinsey TA, Zhang CL, Olson EN. Regulation of skeletal myogenesis by association of the MEF2 transcription factor with class II histone deacetylases. Mol Cell. 2000;6:233–44.PubMedCrossRefGoogle Scholar
  146. 146.
    Luetteke NC, Phillips HK, Qiu TH, Copeland NG, Earp HS, Jenkins NA, Lee DC. The mouse waved-2 phenotype results from a point mutation in the EGF receptor tyrosine kinase. Genes Dev. 1994;8:399–413.PubMedCrossRefGoogle Scholar
  147. 147.
    Ma C, D’Mello SR. Neuroprotection by histone deacetylase-7 (HDAC7) occurs by inhibition of c-jun expression through a deacetylase-independent mechanism. J Biol Chem. 2011;286:4819–28.PubMedCrossRefGoogle Scholar
  148. 148.
    Ma L, Liu J, Wu T, Plikus M, Jiang TX, Bi Q, Liu YH, Muller-Rover S, Peters H, Sundberg JP, et al. ‘Cyclic alopecia’ in Msx2 mutants: defects in hair cycling and hair shaft differentiation. Development (Cambridge, UK). 2003;130:379–89.CrossRefGoogle Scholar
  149. 149.
    Macdonald JI, Dick FA. Posttranslational modifications of the retinoblastoma tumor suppressor protein as determinants of function. Genes Cancer. 2012;3:619–33.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Magnaghi-Jaulin L, Groisman R, Naguibneva I, Robin P, Lorain S, Le Villain JP, Troalen F, Trouche D, Harel-Bellan A. Retinoblastoma protein represses transcription by recruiting a histone deacetylase. Nature. 1998;391:601–5.PubMedCrossRefGoogle Scholar
  151. 151.
    Man MQ, Barish GD, Schmuth M, Crumrine D, Barak Y, Chang S, Jiang Y, Evans RM, Elias PM, Feingold KR. Deficiency of PPARbeta/delta in the epidermis results in defective cutaneous permeability barrier homeostasis and increased inflammation. J Invest Dermatol. 2008;128:370–7.PubMedCrossRefGoogle Scholar
  152. 152.
    Markova NG, Karaman-Jurukovska N, Pinkas-Sarafova A, Marekov LN, Simon M. Inhibition of histone deacetylation promotes abnormal epidermal differentiation and specifically suppresses the expression of the late differentiation marker profilaggrin. J Invest Dermatol. 2007;127:1126–39.PubMedCrossRefGoogle Scholar
  153. 153.
    Martin M, Kettmann R, Dequiedt F. Class IIa histone deacetylases: conducting development and differentiation. Int J Dev Biol. 2009;53:291–301.PubMedCrossRefGoogle Scholar
  154. 154.
    McKinsey TA, Zhang CL, Lu J, Olson EN. Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature. 2000;408:106–11.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    McQuown SC, Wood MA. HDAC3 and the molecular brake pad hypothesis. Neurobiol Learn Mem. 2011;96:27–34.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Meidhof S, Brabletz S, Lehmann W, Preca BT, Mock K, Ruh M, Schuler J, Berthold M, Weber A, Burk U, et al. ZEB1-associated drug resistance in cancer cells is reversed by the class I HDAC inhibitor mocetinostat. EMBO Mol Med. 2015;7:831–47.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Menon GK, Elias PM, Lee SH, Feingold KR. Localization of calcium in murine epidermis following disruption and repair of the permeability barrier. Cell Tissue Res. 1992;270:503–12.PubMedCrossRefGoogle Scholar
  158. 158.
    Menon GK, Grayson S, Elias PM. Ionic calcium reservoirs in mammalian epidermis: ultrastructural localization by ion-capture cytochemistry. J Invest Dermatol. 1985;84:508–12.PubMedCrossRefGoogle Scholar
  159. 159.
    Miettinen PJ, Berger JE, Meneses J, Phung Y, Pedersen RA, Werb Z, Derynck R. Epithelial immaturity and multiorgan failure in mice lacking epidermal growth factor receptor. Nature. 1995;376:337–41.PubMedCrossRefGoogle Scholar
  160. 160.
    Mihaylova MM, Vasquez DS, Ravnskjaer K, Denechaud PD, Yu RT, Alvarez JG, Downes M, Evans RM, Montminy M, Shaw RJ. Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell. 2011;145:607–21.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Mikkola ML. p63 in skin appendage development. Cell Cycle (Georgetown). 2007;6:285–90.CrossRefGoogle Scholar
  162. 162.
    Mikkola ML, Millar SE. The mammary bud as a skin appendage: unique and shared aspects of development. J Mammary Gland Biol Neoplasia. 2006;11:187–203.PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Mill P, Mo R, Fu H, Grachtchouk M, Kim PC, Dlugosz AA, Hui CC. Sonic hedgehog-dependent activation of Gli2 is essential for embryonic hair follicle development. Genes Dev. 2003;17:282–94.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Millar SE. Molecular mechanisms regulating hair follicle development. J Invest Dermatol. 2002;118:216–25.PubMedCrossRefGoogle Scholar
  165. 165.
    Mills AA, Zheng B, Wang XJ, Vogel H, Roop DR, Bradley A. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature. 1999;398:708–13.PubMedCrossRefGoogle Scholar
  166. 166.
    Mlacki M, Darido C, Jane SM, Wilanowski T. Loss of Grainy head-like 1 is associated with disruption of the epidermal barrier and squamous cell carcinoma of the skin. PLoS One. 2014;9:e89247.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Moll R, Franke WW, Schiller DL, Geiger B, Krepler R. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell. 1982;31:11–24.PubMedCrossRefGoogle Scholar
  168. 168.
    Moll UM, Slade N. p63 and p73: roles in development and tumor formation. Mol Cancer Res. 2004;2:371–86.PubMedGoogle Scholar
  169. 169.
    Montgomery RL, Potthoff MJ, Haberland M, Qi X, Matsuzaki S, Humphries KM, Richardson JA, Bassel-Duby R, Olson EN. Maintenance of cardiac energy metabolism by histone deacetylase 3 in mice. J Clin Invest. 2008;118:3588–97.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Moriyama M, Durham AD, Moriyama H, Hasegawa K, Nishikawa S, Radtke F, Osawa M. Multiple roles of Notch signaling in the regulation of epidermal development. Dev Cell. 2008;14:594–604.PubMedCrossRefGoogle Scholar
  171. 171.
    Nair M, Bilanchone V, Ortt K, Sinha S, Dai X. Ovol1 represses its own transcription by competing with transcription activator c-Myb and by recruiting histone deacetylase activity. Nucleic Acids Res. 2007;35:1687–97.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Nair M, Teng A, Bilanchone V, Agrawal A, Li B, Dai X. Ovol1 regulates the growth arrest of embryonic epidermal progenitor cells and represses c-myc transcription. J Cell Biol. 2006;173:253–64.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Nascimento EM, Cox CL, MacArthur S, Hussain S, Trotter M, Blanco S, Suraj M, Nichols J, Kubler B, Benitah SA, et al. The opposing transcriptional functions of Sin3a and c-Myc are required to maintain tissue homeostasis. Nat Cell Biol. 2011;13:1395–405.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Niemann C, Horsley V. Development and homeostasis of the sebaceous gland. Semin Cell Dev Biol. 2012;23:928–36.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Ning MS, Andl T. Concise review: custodians of the transcriptome: how microRNAs guard stemness in squamous epithelia. Stem Cells (Dayton). 2015;33:1047–54.PubMedCentralCrossRefPubMedGoogle Scholar
  176. 176.
    Nishino TG, Miyazaki M, Hoshino H, Miwa Y, Horinouchi S, Yoshida M. 14-3-3 regulates the nuclear import of class IIa histone deacetylases. Biochem Biophys Res Commun. 2008;377:852–6.PubMedCrossRefGoogle Scholar
  177. 177.
    Nowak JA, Polak L, Pasolli HA, Fuchs E. Hair follicle stem cells are specified and function in early skin morphogenesis. Cell Stem Cell. 2008;3:33–43.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Oh SH, Whang YM, Min HY, Han SH, Kang JH, Song KH, Glisson BS, Kim YH, Lee HY. Histone deacetylase inhibitors enhance the apoptotic activity of insulin-like growth factor binding protein-3 by blocking PKC-induced IGFBP-3 degradation. Int J Cancer. 2012;131:2253–63.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Okuyama R, Tagami H, Aiba S. Notch signaling: its role in epidermal homeostasis and in the pathogenesis of skin diseases. J Dermatol Sci. 2008;49:187–94.PubMedCrossRefGoogle Scholar
  180. 180.
    Ouspenskaia T, Matos I, Mertz AF, Fiore VF, Fuchs E. WNT-SHH antagonism specifies and expands stem cells prior to niche formation. Cell. 2016;164:156–69.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Palermo R, Checquolo S, Giovenco A, Grazioli P, Kumar V, Campese AF, Giorgi A, Napolitano M, Canettieri G, Ferrara G, et al. Acetylation controls Notch3 stability and function in T-cell leukemia. Oncogene. 2012;31:3807–17.PubMedCrossRefGoogle Scholar
  182. 182.
    Panelos J, Massi D. Emerging role of Notch signaling in epidermal differentiation and skin cancer. Cancer Biol Ther. 2009;8:1986–93.PubMedCrossRefGoogle Scholar
  183. 183.
    Pang M, Ma L, Liu N, Ponnusamy M, Zhao TC, Yan H, Zhuang S. Histone deacetylase 1/2 mediates proliferation of renal interstitial fibroblasts and expression of cell cycle proteins. J Cell Biochem. 2011;112:2138–48.PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Panteleyev AA, Paus R, Ahmad W, Sundberg JP, Christiano AM. Molecular and functional aspects of the hairless (hr) gene in laboratory rodents and humans. Exp Dermatol. 1998;7:249–67.PubMedCrossRefGoogle Scholar
  185. 185.
    Peterson SC, Eberl M, Vagnozzi AN, Belkadi A, Veniaminova NA, Verhaegen ME, Bichakjian CK, Ward NL, Dlugosz AA, Wong SY. Basal cell carcinoma preferentially arises from stem cells within hair follicle and mechanosensory niches. Cell Stem Cell. 2015;16:400–12.PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Pickering CR, Zhou JH, Lee JJ, Drummond JA, Peng SA, Saade RE, Tsai KY, Curry JL, Tetzlaff MT, Lai SY, et al. Mutational landscape of aggressive cutaneous squamous cell carcinoma. Clin Cancer Res. 2014;20:6582–92.PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Plikus MV, Mayer JA, de la Cruz D, Baker RE, Maini PK, Maxson R, Chuong CM. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration. Nature. 2008;451:340–4.PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Potter GB, Beaudoin GM 3rd, DeRenzo CL, Zarach JM, Chen SH, Thompson CC. The hairless gene mutated in congenital hair loss disorders encodes a novel nuclear receptor corepressor. Genes Dev. 2001;15:2687–701.PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Qu X, Proll M, Neuhoff C, Zhang R, Cinar MU, Hossain MM, Tesfaye D, Grosse-Brinkhaus C, Salilew-Wondim D, Tholen E, et al. Sulforaphane epigenetically regulates innate immune responses of porcine monocyte-derived dendritic cells induced with lipopolysaccharide. PLoS One. 2015;10:e0121574.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Ramsey MR, He L, Forster N, Ory B, Ellisen LW. Physical association of HDAC1 and HDAC2 with p63 mediates transcriptional repression and tumor maintenance in squamous cell carcinoma. Cancer Res. 2011;71:4373–9.PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Rangarajan A, Talora C, Okuyama R, Nicolas M, Mammucari C, Oh H, Aster JC, Krishna S, Metzger D, Chambon P, et al. Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J. 2001;20:3427–36.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Ratman D, Vanden Berghe W, Dejager L, Libert C, Tavernier J, Beck IM, De Bosscher K. How glucocorticoid receptors modulate the activity of other transcription factors: a scope beyond tethering. Mol Cell Endocrinol. 2013;380:41–54.PubMedCrossRefGoogle Scholar
  193. 193.
    Reynolds N, O’Shaughnessy A, Hendrich B. Transcriptional repressors: multifaceted regulators of gene expression. Development. 2013;140:505–12.PubMedCrossRefGoogle Scholar
  194. 194.
    Richardson RJ, Dixon J, Malhotra S, Hardman MJ, Knowles L, Boot-Handford RP, Shore P, Whitmarsh A, Dixon MJ. Irf6 is a key determinant of the keratinocyte proliferation-differentiation switch. Nat Genet. 2006;38:1329–34.PubMedCrossRefGoogle Scholar
  195. 195.
    Robbins DJ, Fei DL, Riobo NA. The Hedgehog signal transduction network. Sci Signal. 2012;5:re6.PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Robertson ED, Weir L, Romanowska M, Leigh IM, Panteleyev AA. ARNT controls the expression of epidermal differentiation genes through HDAC- and EGFR-dependent pathways. J Cell Sci. 2012;125:3320–32.PubMedCrossRefGoogle Scholar
  197. 197.
    Romano RA, Birkaya B, Sinha S. Defining the regulatory elements in the proximal promoter of DeltaNp63 in keratinocytes: potential roles for Sp1/Sp3, NF-Y, and p63. J Invest Dermatol. 2006;126:1469–79.PubMedCrossRefGoogle Scholar
  198. 198.
    Romano RA, Ortt K, Birkaya B, Smalley K, Sinha S. An active role of the DeltaN isoform of p63 in regulating basal keratin genes K5 and K14 and directing epidermal cell fate. PLoS One. 2009;4:e5623.PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Romano RA, Solomon LW, Sinha S. Tp63 in oral development, neoplasia, and autoimmunity. J Dent Res. 2012;91:125–32.PubMedCrossRefGoogle Scholar
  200. 200.
    Rompolas P, Greco V. Stem cell dynamics in the hair follicle niche. Semin Cell Dev Biol. 2014;25-26:34–42.PubMedCrossRefGoogle Scholar
  201. 201.
    Roop D. Defects in the barrier. Science (New York). 1995;267:474–5.CrossRefGoogle Scholar
  202. 202.
    Ruscetti M, Dadashian EL, Guo W, Quach B, Mulholland DJ, Park JW, Tran LM, Kobayashi N, Bianchi-Frias D, Xing Y, Nelson PS, Wu H. HDAC inhibition impedes epithelial-mesenchymal plasticity and suppresses metastatic, castration-resistant prostate cancer. Oncogene. 2016;35:3781–95.Google Scholar
  203. 203.
    Sahu RP, DaSilva SC, Rashid B, Martel KC, Jernigan D, Mehta SR, Mohamed DR, Rezania S, Bradish JR, Armstrong AB, et al. Mice lacking epidermal PPARgamma exhibit a marked augmentation in photocarcinogenesis associated with increased UVB-induced apoptosis, inflammation and barrier dysfunction. Int J Cancer. 2012;131:E1055–66.PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    Sakamoto T, Kobayashi S, Yamada D, Nagano H, Tomokuni A, Tomimaru Y, Noda T, Gotoh K, Asaoka T, Wada H, et al. A histone deacetylase inhibitor suppresses epithelial-mesenchymal transition and attenuates chemoresistance in biliary tract cancer. PLoS One. 2016;11:e0145985.PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Sanford JA, Zhang L-J, Williams MR, Gangoiti JA, Huang C-M, Gallo RL. Inhibition of HDAC8 and HDAC9 by microbial short-chain fatty acids breaks immune tolerance of the epidermis to TLR ligands. Sci Immunol. 2016;1:1–10.CrossRefGoogle Scholar
  206. 206.
    Sano S, Chan KS, DiGiovanni J. Impact of Stat3 activation upon skin biology: a dichotomy of its role between homeostasis and diseases. J Dermatol Sci. 2008;50:1–14.PubMedCrossRefGoogle Scholar
  207. 207.
    Satokata I, Ma L, Ohshima H, Bei M, Woo I, Nishizawa K, Maeda T, Takano Y, Uchiyama M, Heaney S, et al. Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation. Nat Genet. 2000;24:391–5.PubMedCrossRefGoogle Scholar
  208. 208.
    Scholl C, Weibetamuller K, Holenya P, Shaked-Rabi M, Tucker KL, Wolfl S. Distinct and overlapping gene regulatory networks in BMP- and HDAC-controlled cell fate determination in the embryonic forebrain. BMC Genomics. 2012;13:298.PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Schuijers J, Clevers H. Adult mammalian stem cells: the role of Wnt, Lgr5 and R-spondins. EMBO J. 2012;31:2685–96.PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Segre CV, Chiocca S. Regulating the regulators: the post-translational code of class I HDAC1 and HDAC2. J Biomed Biotechnol. 2011;2011:690848.PubMedCrossRefGoogle Scholar
  211. 211.
    Segre J. Complex redundancy to build a simple epidermal permeability barrier. Curr Opin Cell Biol. 2003;15:776–82.PubMedCrossRefGoogle Scholar
  212. 212.
    Segre JA, Bauer C, Fuchs E. Klf4 is a transcription factor required for establishing the barrier function of the skin. Nat Genet. 1999;22:356–60.PubMedCrossRefGoogle Scholar
  213. 213.
    Sennett R, Rendl M. Mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling. Semin Cell Dev Biol. 2012;23:917–27.PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Shahbazian MD, Grunstein M. Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem. 2007;76:75–100.PubMedCrossRefGoogle Scholar
  215. 215.
    Shimomura Y, Christiano AM. Biology and genetics of hair. Annu Rev Genomics Hum Genet. 2010;11:109–32.PubMedCrossRefGoogle Scholar
  216. 216.
    Sibilia M, Fleischmann A, Behrens A, Stingl L, Carroll J, Watt FM, Schlessinger J, Wagner EF. The EGF receptor provides an essential survival signal for SOS-dependent skin tumor development. Cell. 2000;102:211–20.PubMedCrossRefGoogle Scholar
  217. 217.
    Sibilia M, Wagner EF. Strain-dependent epithelial defects in mice lacking the EGF receptor. Science (New York). 1995;269:234–8.CrossRefGoogle Scholar
  218. 218.
    Sil AK, Maeda S, Sano Y, Roop DR, Karin M. IkappaB kinase-alpha acts in the epidermis to control skeletal and craniofacial morphogenesis. Nature. 2004;428:660–4.PubMedCrossRefGoogle Scholar
  219. 219.
    Snippert HJ, Haegebarth A, Kasper M, Jaks V, van Es JH, Barker N, van de Wetering M, van den Born M, Begthel H, Vries RG, et al. Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science (New York). 2010;327:1385–9.CrossRefGoogle Scholar
  220. 220.
    Su X, Cho MS, Gi YJ, Ayanga BA, Sherr CJ, Flores ER. Rescue of key features of the p63-null epithelial phenotype by inactivation of Ink4a and Arf. EMBO J. 2009;28:1904–15.PubMedPubMedCentralCrossRefGoogle Scholar
  221. 221.
    Sun Z, Feng D, Fang B, Mullican SE, You SH, Lim HW, Everett LJ, Nabel CS, Li Y, Selvakumaran V, et al. Deacetylase-independent function of HDAC3 in transcription and metabolism requires nuclear receptor corepressor. Mol Cell. 2013;52:769–82.PubMedCrossRefGoogle Scholar
  222. 222.
    Takeda H, Lyle S, Lazar AJ, Zouboulis CC, Smyth I, Watt FM. Human sebaceous tumors harbor inactivating mutations in LEF1. Nat Med. 2006;12:395–7.PubMedCrossRefGoogle Scholar
  223. 223.
    Tang JY, Mackay-Wiggan JM, Aszterbaum M, Yauch RL, Lindgren J, Chang K, Coppola C, Chanana AM, Marji J, Bickers DR, et al. Inhibiting the hedgehog pathway in patients with the basal-cell nevus syndrome. N Engl J Med. 2012;366:2180–8.PubMedPubMedCentralCrossRefGoogle Scholar
  224. 224.
    Tang Y, Zhao W, Chen Y, Zhao Y, Gu W. Acetylation is indispensable for p53 activation. Cell. 2008;133:612–26.PubMedPubMedCentralCrossRefGoogle Scholar
  225. 225.
    Teng A, Nair M, Wells J, Segre JA, Dai X. Strain-dependent perinatal lethality of Ovol1-deficient mice and identification of Ovol2 as a downstream target of Ovol1 in skin epidermis. Biochim Biophys Acta. 2007;1772:89–95.PubMedCrossRefGoogle Scholar
  226. 226.
    Thaler F, Mercurio C. Towards selective inhibition of histone deacetylase isoforms: what has been achieved, where we are and what will be next. ChemMedChem. 2014;9:523–6.PubMedCrossRefGoogle Scholar
  227. 227.
    Theocharis S, Klijanienko J, Giaginis C, Rodriguez J, Jouffroy T, Girod A, Alexandrou P, Sastre-Garau X. Histone deacetylase-1 and -2 expression in mobile tongue squamous cell carcinoma: associations with clinicopathological parameters and patients survival. J Oral Pathol Med. 2011;40:706–14.PubMedCrossRefGoogle Scholar
  228. 228.
    Thompson CC, Beaudoin GMJ III. Hairless: a nuclear receptor corepressor essential for skin function. In: Advances in developmental biology. Amsterdam: Elsevier; 2006. p. 357–87.Google Scholar
  229. 229.
    Ting SB, Caddy J, Wilanowski T, Auden A, Cunningham JM, Elias PM, Holleran WM, Jane SM. The epidermis of grhl3-null mice displays altered lipid processing and cellular hyperproliferation. Organogenesis. 2005;2:33–5.PubMedPubMedCentralCrossRefGoogle Scholar
  230. 230.
    Trerotola M, Relli V, Simeone P, Alberti S. Epigenetic inheritance and the missing heritability. Hum Genomics. 2015;9:17.PubMedPubMedCentralCrossRefGoogle Scholar
  231. 231.
    Trivedi CM, Luo Y, Yin Z, Zhang M, Zhu W, Wang T, Floss T, Goettlicher M, Noppinger PR, Wurst W, et al. Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3 beta activity. Nat Med. 2007;13:324–31.PubMedCrossRefGoogle Scholar
  232. 232.
    Truong AB, Khavari PA. Control of keratinocyte proliferation and differentiation by p63. Cell Cycle (Georgetown). 2007;6:295–9.CrossRefGoogle Scholar
  233. 233.
    van der Vlag J, Otte AP. Transcriptional repression mediated by the human polycomb-group protein EED involves histone deacetylation. Nat Genet. 1999;23:474–8.PubMedCrossRefGoogle Scholar
  234. 234.
    Vega RB, Harrison BC, Meadows E, Roberts CR, Papst PJ, Olson EN, McKinsey TA. Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Mol Cell Biol. 2004;24:8374–85.PubMedPubMedCentralCrossRefGoogle Scholar
  235. 235.
    Waddington CH. The Epigenotpye. Endeavour. 1942;1:18–20.Google Scholar
  236. 236.
    Wallmeyer L, Lehnen D, Eger N, Sochorova M, Opalka L, Kovacik A, Vavrova K, Hedtrich S. Stimulation of PPARalpha normalizes the skin lipid ratio and improves the skin barrier of normal and filaggrin deficient reconstructed skin. J Dermatol Sci. 2015;80:102–10.PubMedCrossRefGoogle Scholar
  237. 237.
    Wang B, Moya N, Niessen S, Hoover H, Mihaylova MM, Shaw RJ, Yates JR 3rd, Fischer WH, Thomas JB, Montminy M. A hormone-dependent module regulating energy balance. Cell. 2011a;145:596–606.PubMedPubMedCentralCrossRefGoogle Scholar
  238. 238.
    Wang D, Su L, Huang D, Zhang H, Shin DM, Chen ZG. Downregulation of E-Cadherin enhances proliferation of head and neck cancer through transcriptional regulation of EGFR. Mol Cancer. 2011b;10:116.PubMedPubMedCentralCrossRefGoogle Scholar
  239. 239.
    Wang J, Scully K, Zhu X, Cai L, Zhang J, Prefontaine GG, Krones A, Ohgi KA, Zhu P, Garcia-Bassets I, et al. Opposing LSD1 complexes function in developmental gene activation and repression programmes. Nature. 2007;446:882–7.PubMedCrossRefGoogle Scholar
  240. 240.
    Wang X, Xu J, Wang H, Wu L, Yuan W, Du J, Cai S. Trichostatin A, a histone deacetylase inhibitor, reverses epithelial-mesenchymal transition in colorectal cancer SW480 and prostate cancer PC3 cells. Biochem Biophys Res Commun. 2015;456:320–6.PubMedCrossRefGoogle Scholar
  241. 241.
    Wang Z, Zang C, Cui K, Schones DE, Barski A, Peng W, Zhao K. Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell. 2009;138:1019–31.PubMedPubMedCentralCrossRefGoogle Scholar
  242. 242.
    Watt FM, Collins CA. Role of beta-catenin in epidermal stem cell expansion, lineage selection, and cancer. Cold Spring Harb Symp Quant Biol. 2008;73:503–12.PubMedCrossRefGoogle Scholar
  243. 243.
    Wellner U, Schubert J, Burk UC, Schmalhofer O, Zhu F, Sonntag A, Waldvogel B, Vannier C, Darling D, zur Hausen A, et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol. 2009;11:1487–95.PubMedCrossRefGoogle Scholar
  244. 244.
    Wells J, Lee B, Cai AQ, Karapetyan A, Lee WJ, Rugg E, Sinha S, Nie Q, Dai X. Ovol2 suppresses cell cycling and terminal differentiation of keratinocytes by directly repressing c-Myc and Notch1. J Biol Chem. 2009;284:29125–35.PubMedPubMedCentralCrossRefGoogle Scholar
  245. 245.
    Wels C, Joshi S, Koefinger P, Bergler H, Schaider H. Transcriptional activation of ZEB1 by Slug leads to cooperative regulation of the epithelial-mesenchymal transition-like phenotype in melanoma. J Invest Dermatol. 2011;131:1877–85.PubMedPubMedCentralCrossRefGoogle Scholar
  246. 246.
    Winter M, Moser MA, Meunier D, Fischer C, Machat G, Mattes K, Lichtenberger BM, Brunmeir R, Weissmann S, Murko C, et al. Divergent roles of HDAC1 and HDAC2 in the regulation of epidermal development and tumorigenesis. EMBO J. 2013;32:3176–91.PubMedPubMedCentralCrossRefGoogle Scholar
  247. 247.
    Wu S, Luo Z, Yu PJ, Xie H, He YW. Suberoylanilide hydroxamic acid (SAHA) promotes the epithelial mesenchymal transition of triple negative breast cancer cells via HDAC8/FOXA1 signals. Biol Chem. 2016;397:75–83.PubMedCrossRefGoogle Scholar
  248. 248.
    Xin HW, Yang JH, Nguyen DM. Sensitivity to epidermal growth factor receptor tyrosine kinase inhibitor requires E-cadherin in esophageal cancer and malignant pleural mesothelioma. Anticancer Res. 2013;33:2401–8.PubMedGoogle Scholar
  249. 249.
    Xiong H, Du W, Zhang YJ, Hong J, Su WY, Tang JT, Wang YC, Lu R, Fang JY. Trichostatin A, a histone deacetylase inhibitor, suppresses JAK2/STAT3 signaling via inducing the promoter-associated histone acetylation of SOCS1 and SOCS3 in human colorectal cancer cells. Mol Carcinog. 2012;51:174–84.PubMedCrossRefGoogle Scholar
  250. 250.
    Xue Y, Wong J, Moreno GT, Young MK, Cote J, Wang W. NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Mol Cell. 1998;2:851–61.PubMedCrossRefGoogle Scholar
  251. 251.
    Yamaguchi M, Tonou-Fujimori N, Komori A, Maeda R, Nojima Y, Li H, Okamoto H, Masai I. Histone deacetylase 1 regulates retinal neurogenesis in zebrafish by suppressing Wnt and Notch signaling pathways. Development. 2005;132:3027–43.PubMedCrossRefGoogle Scholar
  252. 252.
    Yamaguchi T, Cubizolles F, Zhang Y, Reichert N, Kohler H, Seiser C, Matthias P. Histone deacetylases 1 and 2 act in concert to promote the G1-to-S progression. Genes Dev. 2010;24:455–69.PubMedPubMedCentralCrossRefGoogle Scholar
  253. 253.
    Yang A, Kaghad M, Wang Y, Gillett E, Fleming MD, Dotsch V, Andrews NC, Caput D, McKeon F. p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell. 1998;2:305–16.PubMedCrossRefGoogle Scholar
  254. 254.
    Yang A, Schweitzer R, Sun D, Kaghad M, Walker N, Bronson RT, Tabin C, Sharpe A, Caput D, Crum C, et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature. 1999;398:714–8.PubMedCrossRefGoogle Scholar
  255. 255.
    Yang LC, Ng DC, Bikle DD. Role of protein kinase C alpha in calcium induced keratinocyte differentiation: defective regulation in squamous cell carcinoma. J Cell Physiol. 2003;195:249–59.PubMedCrossRefGoogle Scholar
  256. 256.
    Yao YL, Yang WM, Seto E. Regulation of transcription factor YY1 by acetylation and deacetylation. Mol Cell Biol. 2001;21:5979–91.PubMedPubMedCentralCrossRefGoogle Scholar
  257. 257.
    Ye GD, Sun GB, Jiao P, Chen C, Liu QF, Huang XL, Zhang R, Cai WY, Li SN, Wu JF, et al. OVOL2, an inhibitor of WNT signaling, reduces invasive activities of human and mouse cancer cells and is down-regulated in human colorectal tumors. Gastroenterology. 2016;150:659–671.e616.PubMedCrossRefGoogle Scholar
  258. 258.
    Yi R, Poy MN, Stoffel M, Fuchs E. A skin microRNA promotes differentiation by repressing ‘stemness. Nature. 2008;452:225–9.PubMedPubMedCentralCrossRefGoogle Scholar
  259. 259.
    Yu T, Chen X, Zhang W, Liu J, Avdiushko R, Napier DL, Liu AX, Neltner JM, Wang C, Cohen D, et al. KLF4 regulates adult lung tumor-initiating cells and represses K-Ras-mediated lung cancer. Cell Death Differ. 2016;23:207–15.PubMedCrossRefGoogle Scholar
  260. 260.
    Yu Z, Lin KK, Bhandari A, Spencer JA, Xu X, Wang N, Lu Z, Gill GN, Roop DR, Wertz P, et al. The Grainyhead-like epithelial transactivator Get-1/Grhl3 regulates epidermal terminal differentiation and interacts functionally with LMO4. Dev Biol. 2006;299:122–36.PubMedCrossRefGoogle Scholar
  261. 261.
    Yuan ZL, Guan YJ, Chatterjee D, Chin YE. Stat3 dimerization regulated by reversible acetylation of a single lysine residue. Science (New York). 2005;307:269–73.CrossRefGoogle Scholar
  262. 262.
    Zeng L, Zhou MM. Bromodomain: an acetyl-lysine binding domain. FEBS Lett. 2002;513:124–8.PubMedCrossRefGoogle Scholar
  263. 263.
    Zhang W, Ji W, Liu X, Ouyang G, Xiao W. ELL inhibits E2F1 transcriptional activity by enhancing E2F1 deacetylation via recruitment of histone deacetylase 1. Mol Cell Biol. 2014;34:765–75.PubMedPubMedCentralCrossRefGoogle Scholar
  264. 264.
    Zhang Y, Matkovich SJ, Duan X, Diwan A, Kang MY, Dorn GW 2nd. Receptor-independent protein kinase C alpha (PKCalpha) signaling by calpain-generated free catalytic domains induces HDAC5 nuclear export and regulates cardiac transcription. J Biol Chem. 2011;286:26943–51.PubMedPubMedCentralCrossRefGoogle Scholar
  265. 265.
    Zhao J, Quan H, Xie C, Lou L. NL-103, a novel dual-targeted inhibitor of histone deacetylases and hedgehog pathway, effectively overcomes vismodegib resistance conferred by Smo mutations. Pharmacol Res Perspect. 2014;2:e00043.PubMedPubMedCentralCrossRefGoogle Scholar
  266. 266.
    Zheng Y, Eilertsen KJ, Ge L, Zhang L, Sundberg JP, Prouty SM, Stenn KS, Parimoo S. Scd1 is expressed in sebaceous glands and is disrupted in the asebia mouse. Nat Genet. 1999;23:268–70.PubMedCrossRefGoogle Scholar
  267. 267.
    Westfall MD, Mays DJ, Sniezek JC, Pietenpol JA. The Delta Np63 alpha phosphoprotein binds the p21 and 14-3-3 sigma promoters in vivo and has transcriptional repressor activity that is reduced by Hay-Wells syndrome-derived mutations. Mol Cell Biol. 2003;23:2264–76.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Dermatology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of Cell and Developmental Biology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.Department of Anatomy and Cell Biology, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations