Advertisement

All Roads Go to the Nucleus: Integration of Signaling/Transcription Factor-Mediated and Epigenetic Regulatory Mechanisms in the Control of Skin Development and Regeneration

  • Vladimir A. BotchkarevEmail author
  • Andrey A. Sharov
  • Michael Y. Fessing
Chapter
  • 420 Downloads
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)

Abstract

Mammalian skin fulfills a large number of functions including protection of the organism against environmental (physical, chemical, biological) stressors, maintenance of body temperature and water balance, transmission of sensory information and psycho-social communications. To efficiently fulfill these complex functions, the skin develops as an organ that is capable of maintaining its structural integrity and shows a high degree of plasticity in response to changing environmental conditions. Skin development results in formation of the epidermis, dermis and cutaneous appendages. During postnatal life, the epithelial components of the skin, including the epidermis and hair follicles, regenerate, a process that involves the activation of dedicated pools of stem cells. After injury, epidermal and hair follicle stem cells contribute to skin regeneration by supplying their progenies to restore the skin epithelium. Skin development and regeneration are controlled by signaling/transcription factor-mediated and epigenetic mechanisms, which operate in concert to regulate gene expression. Signals received from the external environment are transmitted to the cell nucleus, which operates as a command center conferring responsiveness to extrinsic cues into distinct transcriptional outcomes. Here, we review the current state of research illustrating the critical cross-talk between signaling/transcription factor-mediated and epigenetic mechanisms which is required for execution of skin-specific programs of gene activation and silencing during development, regeneration and adaptation to environmental factors. Additional efforts are required to fully understand how the epigenome in cutaneous cells is re-organized during these processes. Future research in this direction will help to bridge the gap between our current knowledge of signaling/transcription factor-mediated and epigenetic mechanisms and potential applications of signaling and epigenetic modulators, which may provide new approaches for treatment of skin disorders and protection of skin against environmental stressors.

Keywords

Hair Follicle Stem Cells Topologically Associating Domains (TADs) Epidermal Differentiation Complex (EDC) Lineage-specific Gene Expression Programs Chromosome Territories 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

KC

keratinocyte

References

  1. 1.
    Chuong CM, Nickoloff BJ, Elias PM, Goldsmith LA, Macher E, Maderson PA, et al. What is the ‘true’ function of skin? Exp Dermatol 2002;11(2):159–187. Epub 2002/05/08. doi: 112 [pii]. PubMed PMID: 11994143.Google Scholar
  2. 2.
    Chuong CM, editor. Molecular basis of epithelial appendage morphogenesis. Austin: Landes Biosciences; 1998.Google Scholar
  3. 3.
    Slominski A, Wortsman J. Neuroendocrinology of the skin. Endocrine Rev. 2000;21:457–87.Google Scholar
  4. 4.
    Kupper TS, Fuhlbrigge RC. Immune surveillance in the skin: mechanisms and clinical consequences. Nat Rev Immunol. 2004;4:211–22.CrossRefPubMedGoogle Scholar
  5. 5.
    Sengel P. Morphogenesis of the skin. In: Abercrombie M, Newth DR, Torrey JG, editors. Developmental and cell biology series. Cambridge: Cambridge University Press; 1976.Google Scholar
  6. 6.
    Gilbert SF. Developmental biology. Sunderland: Sinauer Associates, Inc.; 2003. 784 pGoogle Scholar
  7. 7.
    Dhouailly D, Olivera-Martinez I, Fliniaux I, Missier S, Viallet JP, Thelu J. Skin field formation: morphogenetic events. Int J Dev Biol 2004;48(2–3):85–91. doi: https://doi.org/10.1387/ijdb.031753dd. Epub 2004/07/24. 031753dd [pii]. PubMed PMID: 15272373.
  8. 8.
    Loomis CA. Development and morphogenesis of the skin. Adv Dermatol 2001;17:183–210. Epub 2002/01/05. PubMed PMID: 11758116.Google Scholar
  9. 9.
    Fuchs E, Raghavan S. Getting under the skin of epidermal morphogenesis. Nat Rev Genet. 2002;3:199–209.CrossRefPubMedGoogle Scholar
  10. 10.
    Chu DH, Haake AR, Hobrook K, Loomis CA. The structure and development of skin. In: Freedberg IM, Eisen AZ, Wolf K, Austen KF, Goldsmith LA, Katz SI, editors. Fitzpatrick’s dermatology in general medicine, vol. 1. New York: McGraw-Hill; 2003. p. 58–88.Google Scholar
  11. 11.
    Stenn KS, Paus R. Controls of hair follicle cycling. Physiol Rev 2001;81(1):449–494. Epub 2001/01/12. PubMed PMID: 11152763.Google Scholar
  12. 12.
    Schneider MR, Schmidt-Ullrich R, Paus R. The hair follicle as a dynamic miniorgan. Curr Biol 2009;19(3):R132–R142. doi:  https://doi.org/10.1016/j.cub.2008.12.005. Epub 2009/02/13. S0960-9822(08)01626-6 [pii]. PubMed. PMID: 19211055.
  13. 13.
    Arwert EN, Hoste E, Watt FM. Epithelial stem cells, wound healing and cancer. Nat Rev Cancer 2012;12(3):170–180. doi: https://doi.org/10.1038/nrc3217. PubMed PMID: 22362215.
  14. 14.
    Cotsarelis G, Millar SE. Towards a molecular understanding of hair loss and its treatment. Trends Mol Med. 2001;7:293–301.CrossRefPubMedGoogle Scholar
  15. 15.
    Uitto J, Pulkkinen L, Ringpfeil F. Progress in molecular genetics of heritable skin diseases: the paradigms of epidermolysis bullosa and pseudoxanthoma elasticum. J Invest Dermatol Symp Proc. 2002;7:6–16.CrossRefGoogle Scholar
  16. 16.
    Irvine AD, McLean WH. The molecular genetics of the genodermatoses: progress to date and future directions. Br J Dermatol. 2003;148:1–13.CrossRefGoogle Scholar
  17. 17.
    Lane EB, McLean WH. Keratins and skin disorders. J Pathol 2004;204(4):355–366. doi: https://doi.org/10.1002/path.1643. Epub 2004/10/21. PubMed PMID: 15495218.
  18. 18.
    O’Shaughnessy RFCA. Inherited disorders of the skin in human and mouse: from development to differentiation. Int J Dev Biol. 2004;48:171–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Schmidt-Ullrich R, Paus R. Molecular principles of hair follicle induction and morphogenesis. BioEssays. 2005;27:247–61.CrossRefPubMedGoogle Scholar
  20. 20.
    Maini PK, Baker RE, Chuong CM. Developmental biology. The Turing model comes of molecular age. Science. 2006;314(5804):1397–8. doi: https://doi.org/10.1126/science.1136396 314/5804/1397 [pii]. Epub 2006/12/02. PubMed PMID: 17138885.
  21. 21.
    Chuong CM, Richardson MK. Pattern formation today. Int J Dev Biol. 2009;53(5–6):653–8. doi: https://doi.org/10.1387/ijdb.082594cc. Epub 2009/06/27. 082594cc [pii]. PubMed PMID: 19557673; PubMed Central PMCID: PMCPMC2874132.
  22. 22.
    Shirakata Y. Regulation of epidermal keratinocytes by growth factors. J Dermatol Sci 2010;59(2):73–80.  https://doi.org/10.1016/j.jdermsci.2010.05.002. Epub 2010/06/24. doi: S0923-1811(10)00163-5 [pii]. PubMed PMID: 20570492.
  23. 23.
    Chuong CM, Randall VA, Widelitz RB, Wu P, Jiang TX. Physiological regeneration of skin appendages and implications for regenerative medicine. Physiology (Bethesda) 2012;27(2):61–72. doi:  https://doi.org/10.1152/physiol.00028.2011.27/2/61 [pii]. Epub 2012/04/17. PubMed PMID: 22505663.
  24. 24.
    Lee J, Tumbar T. Hairy tale of signaling in hair follicle development and cycling. Semin Cell Dev Biol. 2012;23(8):906–16. doi: https://doi.org/10.1016/j.semcdb.2012.08.003. Epub 2012/09/04. S1084-9521(12)00144-9 [pii]. PubMed PMID: 22939761; PubMed Central PMCID: PMCPMC3496046.
  25. 25.
    Koster MI, Roop DR. Mechanisms regulating epithelial stratification. Annu Rev Cell Dev Biol 2007;23:93–113. doi: https://doi.org/10.1146/annurev.cellbio.23.090506.123357. Epub 2007/05/11. PubMed PMID: 17489688.
  26. 26.
    Blanpain C, Fuchs E. Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol. 2009;10(3):207–17. doi:  https://doi.org/10.1038/nrm2636. nrm2636 [pii]. Epub 2009/02/12. PubMed PMID: 19209183; PubMed Central PMCID: PMCPMC2760218.
  27. 27.
    Ning MS, Andl T. Control by a hair’s breadth: the role of microRNAs in the skin. Cell Mol Life Sci. 2012. doi: https://doi.org/10.1007/s00018-012-1117-z. Epub 2012/09/18. PubMed PMID: 22983383; PubMed Central PMCID: PMCPMC3548021.
  28. 28.
    Botchkareva NV. MicroRNA/mRNA regulatory networks in the control of skin development and regeneration. Cell Cycle 2012;11(3):468–474. doi:  https://doi.org/10.4161/cc.11.3.19058. Epub 2012/01/21. 19058 [pii]. PubMed PMID: 22262186.
  29. 29.
    Yi R, Fuchs E. A miR image of stem cells and their lineages. Curr Top Dev Biol 2012;99:175–199. doi:  https://doi.org/10.1016/B978-0-12-387038-4.00007-0. .Epub 2012/03/01. B978-0-12-387038-4.00007-0 [pii]. PubMed PMID: 22365739.
  30. 30.
    Botchkarev VA, Gdula MR, Mardaryev AN, Sharov AA, Fessing MY. Epigenetic regulation of gene expression in keratinocytes. J Invest Dermatol 2012;132(11):2505–2521. doi:  https://doi.org/10.1038/jid.2012.182. Epub 2012/07/06. jid2012182 [pii]. PubMed PMID: 22763788.
  31. 31.
    Frye M, Benitah SA. Chromatin regulators in mammalian epidermis. Semin Cell Dev Biol 2012;23(8):897–905. doi:  https://doi.org/10.1016/j.semcdb.2012.08.009. Epub 2012/09/05. S1084-9521(12)00150-4 [pii]. PubMed PMID: 22944592.
  32. 32.
    Zhang J, Bardot E, Ezhkova E. Epigenetic regulation of skin: focus on the Polycomb complex. Cell Mol Life Sci 2012;69(13):2161–2172. doi:  https://doi.org/10.1007/s00018-012-0920-x. Epub 2012/02/09. PubMed PMID: 22314499.
  33. 33.
    Martin N, Patel S, Segre JA. Long-range comparison of human and mouse Sprr loci to identify conserved noncoding sequences involved in coordinate regulation. Genome Res. 2004;14(12):2430–8.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Magin TM, Vijayaraj P, Leube RE. Structural and regulatory functions of keratins. Exp Cell Res 2007;313(10):2021–2032. doi: https://doi.org/10.1016/j.yexcr.2007.03.005. S0014-4827(07)00108-5 [pii]. Epub 2007/04/17. PubMed PMID: 17434482.
  35. 35.
    Ho L, Crabtree GR. Chromatin remodelling during development. Nature. 2010;463(7280):474–84.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Perdigoto CN, Valdes VJ, Bardot ES, Ezhkova E. Epigenetic regulation of epidermal differentiation. Cold Spring Harb Perspect Med. 2014;4(2). doi: https://doi.org/10.1101/cshperspect.a015263. a015263 [pii]. 4/2/a015263 [pii]. Epub 2014/02/05. PubMed PMID: 24492849.
  37. 37.
    Adam RC, Fuchs E. The Yin and Yang of chromatin dynamics in stem cell fate selection. Trends Genet 2016;32(2):89–100. doi:  https://doi.org/10.1016/j.tig.2015.11.002. PubMed PMID: 26689127; PubMed Central PMCID: PMCPMC4733603.
  38. 38.
    Feinberg AP. Phenotypic plasticity and the epigenetics of human disease. Nature 2007;447(7143):433–440. doi: https://doi.org/10.1038/nature05919. nature05919 [pii]. Epub 2007/05/25. PubMed PMID: 17522677.
  39. 39.
    Feinberg AP. The epigenetic basis of common human disease. Trans Am Clin Climatol Assoc. 2013;124:84–93. PubMed PMID: 23874013; PubMed Central PMCID: PMCPMC3715917.Google Scholar
  40. 40.
    Byrne C, Tainsky M, Fuchs E. Programming gene expression in developing epidermis. Development 1994;120(9):2369–2383. Epub 1994/09/01. PubMed PMID: 7525178.Google Scholar
  41. 41.
    Weiss LW, Zelickson AS. Embryology of the epidermis: ultrastructural aspects. 1. Formation and early development in the mouse with mammalian comparisons. Acta Derm Venereol 1975;55(3):161–168. Epub 1975/01/01. PubMed PMID: 50684.Google Scholar
  42. 42.
    Lechler T, Fuchs E. Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature. 2005;437(7056):275–80. doi:  https://doi.org/10.1038/nature03922. Epub 2005/08/12. nature03922 [pii]. PubMed PMID: 16094321; PubMed Central PMCID: PMCPMC1399371.
  43. 43.
    Rowden G. Ultrastructural studies of keratinized epithelia of the mouse. III. Determination of the volumes of nuclei and cytoplasm of cells in murine epidermis. J Invest Dermatol 1975;64(1):1–3. Epub 1975/01/01. PubMed PMID: 1110303.Google Scholar
  44. 44.
    Gdula MR, Poterlowicz K, Mardaryev AN, Sharov AA, Peng Y, Fessing MY, et al. Remodelling of three-dimensional organization of the nulceus during terminal keratinocyte differentiation in the epidermis. 2012.Google Scholar
  45. 45.
    Simpson CL, Patel DM, Green KJ. Deconstructing the skin: cytoarchitectural determinants of epidermal morphogenesis. Nat Rev Mol Cell Biol. 2011;12(9):565–80. doi:  https://doi.org/10.1038/nrm3175. Epub 2011/08/24. nrm3175 [pii]. PubMed PMID: 21860392; PubMed Central PMCID: PMCPMC3280198.
  46. 46.
    Gu LH, Coulombe PA. Keratin function in skin epithelia: a broadening palette with surprising shades. Curr Opin Cell Biol 2007;19(1):13–23. doi: https://doi.org/10.1016/j.ceb.2006.12.007. Epub 2006/12/21. S0955-0674(06)00188-8 [pii]. PubMed PMID: 17178453.
  47. 47.
    Kim S, Coulombe PA. Emerging role for the cytoskeleton as an organizer and regulator of translation. Nat Rev Mol Cell Biol 2010;11(1):75–81. doi: https://doi.org/10.1038/nrm2818. Epub 2009/12/23. nrm2818 [pii]. PubMed PMID: 20027187.
  48. 48.
    Poulson ND, Lechler T. Asymmetric cell divisions in the epidermis. Int Rev Cell Mol Biol 2012;295:199–232. doi: https://doi.org/10.1016/B978-0-12-394306-4.00012-5. Epub 2012/03/28. B978-0-12-394306-4.00012-5 [pii]. PubMed PMID: 22449491.
  49. 49.
    Wallace L, Roberts-Thompson L, Reichelt J. Deletion of K1/K10 does not impair epidermal stratification but affects desmosomal structure and nuclear integrity. J Cell Sci 2012;125(Pt 7):1750–1758. doi: https://doi.org/10.1242/jcs.097139. jcs.097139 [pii]. Epub 2012/03/01. PubMed PMID: 22375063.
  50. 50.
    Weiss LW, Zelickson AS. Embryology of the epidermis: ultrastructural aspects. II. Period of differentiation in the mouse with mammalian comparisons. Acta Derm Venereol 1975;55(5):321–329. Epub 1975/01/01. PubMed PMID: 52965.Google Scholar
  51. 51.
    Candi E, Schmidt R, Melino G. The cornified envelope: a model of cell death in the skin. Nat Rev Mol Cell Biol 2005;6(4):328–340. doi:  https://doi.org/10.1038/nrm1619. nrm1619 [pii]. Epub 2005/04/02. PubMed PMID: 15803139.
  52. 52.
    Byrne C, Hardman M, Nield K. Covering the limb – formation of the integument. J Anat. 2003;202(1):113–23. Epub 2003/02/18. PubMed PMID: 12587926; PubMed Central PMCID: PMCPMC1571060.Google Scholar
  53. 53.
    Chu DH, Haake AR, Holbrook K, Loomis CA. The structure and development of skin. In: Freedberg I, editor. Dermatology in general medicine. New York: McGraw-Hill; 2007. p. 58–98.Google Scholar
  54. 54.
    Denecker G, Ovaere P, Vandenabeele P, Declercq W. Caspase-14 reveals its secrets. J Cell Biol. 2008;180(3):451–8. doi: https://doi.org/10.1083/jcb.200709098. jcb.200709098 [pii]. Epub 2008/02/06. PubMed PMID: 18250198; PubMed Central PMCID: PMCPMC2234247.
  55. 55.
    Weiss LW, Zelickson AS. Embryology of the epidermis: ultrastructural aspects. III. Maturation and primary appearance of dendritic cells in the mouse with mammalian comparisons. Acta Derm Venereol 1975;55(6):431–442. Epub 1975/01/01. PubMed PMID: 55035.Google Scholar
  56. 56.
    Peters EM, Botchkarev VA, Muller-Rover S, Moll I, Rice FL, Paus R. Developmental timing of hair follicle and dorsal skin innervation in mice. J Comp Neurol 2002;448(1):28–52. doi:  https://doi.org/10.1002/cne.10212. Epub 2002/05/16. PubMed PMID: 12012374.
  57. 57.
    Botchkarev VA, Metz M, Botchkareva NV, Welker P, Lommatzsch M, Renz H, et al. Brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4 act as "epitheliotrophins" in murine skin. Lab Investig 1999;79(5):557–572. Epub 1999/05/20. PubMed PMID: 10334567.Google Scholar
  58. 58.
    Magerl M, Tobin DJ, Muller-Rover S, Hagen E, Lindner G, McKay IA, et al. Patterns of proliferation and apoptosis during murine hair follicle morphogenesis. J Invest Dermatol 2001;116(6):947–955. doi: https://doi.org/10.1046/j.0022-202x.2001.01368.x. jid1368 [pii]. Epub 2001/06/16. PubMed PMID: 11407986.
  59. 59.
    Vanbokhoven H, Melino G, Candi E, Declercq W. p63, a story of mice and men. J Invest Dermatol 2011;131(6):1196–1207. doi: https://doi.org/10.1038/jid.2011.84. jid201184 [pii]. Epub 2011/04/08. PubMed PMID: 21471985.
  60. 60.
    Mardaryev AN, Gdula MR, Yarker JL, Emelianov VN, Poterlowicz K, Sharov AA, et al. p63 and Brg1 control developmentally regulated higher-order chromatin remodelling at the epidermal differentiation complex locus in epidermal progenitor cells. Development. 2014;141(1):101–11. doi:  https://doi.org/10.1242/dev.103200. Epub 2013/12/19. 141/1/101 [pii]. PubMed PMID: 24346698; PubMed Central PMCID: PMCPMC3865752.
  61. 61.
    Mardaryev AN, Liu B, Rapisarda V, Poterlowicz K, Malashchuk I, Rudolf J, et al. Cbx4 maintains the epithelial lineage identity and cell proliferation in the developing stratified epithelium. J Cell Biol 2016;212(1):77–89. doi:  https://doi.org/10.1083/jcb.201506065. PubMed PMID: 26711500; PubMed Central PMCID: PMCPMC4700479.
  62. 62.
    Mills AA, Zheng B, Wang XJ, Vogel H, Roop DR, Bradley A. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature. 1999;398(6729):708–13.CrossRefPubMedGoogle Scholar
  63. 63.
    Yang A, Schweitzer R, Sun D, Kaghad M, Walker N, Bronson RT, et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 1999;398(6729):714–718. doi:  https://doi.org/10.1038/19539. Epub 1999/05/05. PubMed PMID: 10227294.
  64. 64.
    Ince TA, Cviko AP, Quade BJ, Yang A, McKeon FD, Mutter GL, et al. p63 Coordinates anogenital modeling and epithelial cell differentiation in the developing female urogenital tract. Am J Pathol. 2002;161(4):1111–7. doi: https://doi.org/10.1016/S0002-9440(10)64387-8. Epub 2002/10/09. S0002-9440(10)64387-8 [pii]. PubMed PMID: 12368184; PubMed Central PMCID: PMCPMC1867285.
  65. 65.
    Koster MI. p63 in skin development and ectodermal dysplasias. J Invest Dermatol. 2010;130(10):2352–8. doi:  https://doi.org/10.1038/jid.2010.119. jid2010119 [pii]. Epub 2010/05/07. PubMed PMID: 20445549; PubMed Central PMCID: PMCPMC2919658.
  66. 66.
    Rinne T, Brunner HG, van Bokhoven H. p63-associated disorders. Cell Cycle 2007;6(3):262–268. Epub 2007/01/17. doi: 3796 [pii]. PubMed PMID: 17224651.Google Scholar
  67. 67.
    Romano RA, Smalley K, Magraw C, Serna VA, Kurita T, Raghavan S, et al. DeltaNp63 knockout mice reveal its indispensable role as a master regulator of epithelial development and differentiation. Development. 2012;139(4):772–82. doi:  https://doi.org/10.1242/dev.071191. 139/4/772 [pii]. Epub 2012/01/26. PubMed PMID: 22274697; PubMed Central PMCID: PMCPMC3265062.
  68. 68.
    Guo X, Keyes WM, Papazoglu C, Zuber J, Li W, Lowe SW, et al. TAp63 induces senescence and suppresses tumorigenesis in vivo. Nat Cell Biol. 2009;11(12):1451–7. doi:  https://doi.org/10.1038/ncb1988. ncb1988 [pii]. Epub 2009/11/10. PubMed PMID: 19898465; PubMed Central PMCID: PMCPMC2920298.
  69. 69.
    Fessing MY, Mardaryev AN, Gdula MR, Sharov AA, Sharova TY, Rapisarda V, et al. p63 regulates Satb1 to control tissue-specific chromatin remodeling during development of the epidermis. J Cell Biol. 2011;194(6):825–39. doi:  https://doi.org/10.1083/jcb.201101148. jcb.201101148 [pii]. Epub 2011/09/21. PubMed PMID: 21930775; PubMed Central PMCID: PMCPMC3207288.
  70. 70.
    Pastore S, Mascia F, Mariani V, Girolomoni G. The epidermal growth factor receptor system in skin repair and inflammation. J Invest Dermatol 2008;128(6):1365–1374. doi: https://doi.org/10.1038/sj.jid.5701184. 5701184 [pii]. Epub 2007/12/01. PubMed PMID: 18049451.
  71. 71.
    Braun S, auf dem Keller U, Steiling H, Werner S. Fibroblast growth factors in epithelial repair and cytoprotection. Philos Trans R Soc Lond B Biol Sci. 2004;359(1445):753–7. doi: https://doi.org/10.1098/rstb.2004.1464. Epub 2004/08/06. B8J00UNA7V7V04PB [pii]. PubMed PMID: 15293802; PubMed Central PMCID: PMCPMC1693362.
  72. 72.
    Botchkarev VA, Yaar M, Peters EM, Raychaudhuri SP, Botchkareva NV, Marconi A, et al. Neurotrophins in skin biology and pathology. J Invest Dermatol 2006;126(8):1719–1727. doi: https://doi.org/10.1038/sj.jid.5700270. 5700270 [pii]. Epub 2006/07/18. PubMed PMID: 16845411.
  73. 73.
    Paus R, Peters EM, Eichmuller S, Botchkarev VA. Neural mechanisms of hair growth control. J Investig Dermatol Symp Proc. 1997;2(1):61–8.CrossRefPubMedGoogle Scholar
  74. 74.
    Scholzen T, Armstrong CA, Bunnett NW, Luger TA, Olerud JE, Ansel JC. Neuropeptides in the skin: interactions between the neuroendocrine and the skin immune systems. Exp Dermatol 1998;7(2–3):81–96. Epub 1998/05/16. PubMed PMID: 9583747.Google Scholar
  75. 75.
    Watt FM, Frye M, Benitah SA. MYC in mammalian epidermis: how can an oncogene stimulate differentiation? Nat Rev Cancer. 2008;8(3):234–42. doi:  https://doi.org/10.1038/nrc2328. nrc2328 [pii]. Epub 2008/02/23. PubMed PMID: 18292777; PubMed Central PMCID: PMCPMC2494614.
  76. 76.
    Ferone G, Thomason HA, Antonini D, De Rosa L, Hu B, Gemei M, et al. Mutant p63 causes defective expansion of ectodermal progenitor cells and impaired FGF signalling in AEC syndrome. EMBO Mol Med. 2012;4(3):192–205. doi:  https://doi.org/10.1002/emmm.201100199. Epub 2012/01/17. PubMed PMID: 22247000; PubMed Central PMCID: PMCPMC3376849.
  77. 77.
    Su X, Cho MS, Gi YJ, Ayanga BA, Sherr CJ, Flores ER. Rescue of key features of the p63-null epithelial phenotype by inactivation of Ink4a and Arf. EMBO J. 2009;28(13):1904–15. doi:  https://doi.org/10.1038/emboj.2009.151. emboj2009151 [pii]. Epub 2009/06/06. PubMed PMID: 19494829; PubMed Central PMCID: PMCPMC2711186.
  78. 78.
    Westfall MD, Mays DJ, Sniezek JC, Pietenpol JA. The Delta Np63 alpha phosphoprotein binds the p21 and 14-3-3 sigma promoters in vivo and has transcriptional repressor activity that is reduced by Hay-Wells syndrome-derived mutations. Mol Cell Biol. 2003;23(7):2264–76. Epub 2003/03/18. PubMed PMID: 12640112; PubMed Central PMCID: PMCPMC150720.Google Scholar
  79. 79.
    LeBoeuf M, Terrell A, Trivedi S, Sinha S, Epstein JA, Olson EN, et al. Hdac1 and Hdac2 act redundantly to control p63 and p53 functions in epidermal progenitor cells. Dev Cell. 2010;19(6):807–18. doi:  https://doi.org/10.1016/j.devcel.2010.10.015. S1534-5807(10)00468-5 [pii]. Epub 2010/11/26. PubMed PMID: 21093383; PubMed Central PMCID: PMCPMC3003338.
  80. 80.
    Dotto GP. p21(WAF1/Cip1): more than a break to the cell cycle? Biochim Biophys Acta 2000;1471(1):M43–M56. Epub 2000/09/01. doi: S0304-419X(00)00019-6 [pii]. PubMed PMID: 10967424.Google Scholar
  81. 81.
    Watt FM, Estrach S, Ambler CA. Epidermal Notch signalling: differentiation, cancer and adhesion. Curr Opin Cell Biol. 2008;20(2):171–9. doi:  https://doi.org/10.1016/j.ceb.2008.01.010. S0955-0674(08)00024-0 [pii]. Epub 2008/03/18. PubMed PMID: 18342499; PubMed Central PMCID: PMCPMC2324124.
  82. 82.
    Dotto GP. Crosstalk of Notch with p53 and p63 in cancer growth control. Nat Rev Cancer 2009;9(8):587–595. doi:  https://doi.org/10.1038/nrc2675. nrc2675 [pii]. Epub 2009/07/18. PubMed PMID: 19609265.
  83. 83.
    Ferrandiz N, Caraballo JM, Garcia-Gutierrez L, Devgan V, Rodriguez-Paredes M, Lafita MC, et al. p21 as a transcriptional co-repressor of S-phase and mitotic control genes. PLoS One. 2012;7(5):e37759. doi:  https://doi.org/10.1371/journal.pone.0037759. Epub 2012/06/05. PONE-D-11-22619 [pii]. PubMed PMID: 22662213; PubMed Central PMCID: PMCPMC3360621.
  84. 84.
    Wang X, Bolotin D, Chu DH, Polak L, Williams T, Fuchs E. AP-2alpha: a regulator of EGF receptor signaling and proliferation in skin epidermis. J Cell Biol. 2006;172(3):409–21. doi:  https://doi.org/10.1083/jcb.200510002. jcb.200510002 [pii]. Epub 2006/02/02. PubMed PMID: 16449191; PubMed Central PMCID: PMCPMC2063650.
  85. 85.
    Marinari B, Ballaro C, Koster MI, Giustizieri ML, Moretti F, Crosti F, et al. IKKalpha is a p63 transcriptional target involved in the pathogenesis of ectodermal dysplasias. J Invest Dermatol 2009;129(1):60–69. doi:  https://doi.org/10.1038/jid.2008.202. jid2008202 [pii]. Epub 2008/07/18. PubMed PMID: 18633439.
  86. 86.
    Moretti F, Marinari B, Lo Iacono N, Botti E, Giunta A, Spallone G, et al. A regulatory feedback loop involving p63 and IRF6 links the pathogenesis of 2 genetically different human ectodermal dysplasias. J Clin Invest. 2010;120(5):1570–7. doi:  https://doi.org/10.1172/JCI40267. 40267 [pii]. Epub 2010/04/29. PubMed PMID: 20424325; PubMed Central PMCID: PMCPMC2860936.
  87. 87.
    Yi R, Poy MN, Stoffel M, Fuchs E. A skin microRNA promotes differentiation by repressing ‘stemness’. Nature 2008;452(7184):225–229. doi: https://doi.org/10.1038/nature06642. Epub 2008/03/04. doi: nature06642 [pii]. PubMed PMID: 18311128.
  88. 88.
    Williams SE, Beronja S, Pasolli HA, Fuchs E. Asymmetric cell divisions promote Notch-dependent epidermal differentiation. Nature. 2011;470(7334):353–8. doi:  https://doi.org/10.1038/nature09793. nature09793 [pii]. Epub 2011/02/19. PubMed PMID: 21331036; PubMed Central PMCID: PMCPMC3077085.
  89. 89.
    Goulas S, Conder R, Knoblich JA. The par complex and integrins direct asymmetric cell division in adult intestinal stem cells. Cell Stem Cell 2012;11(4):529–540. doi:  https://doi.org/10.1016/j.stem.2012.06.017. S1934-5909(12)00478-X [pii]. Epub 2012/10/09. PubMed PMID: 23040479.
  90. 90.
    Blanpain C, Lowry WE, Pasolli HA, Fuchs E. Canonical notch signaling functions as a commitment switch in the epidermal lineage. Genes Dev. 2006;20(21):3022–35. doi:  https://doi.org/10.1101/gad.1477606. 20/21/3022 [pii]. Epub 2006/11/03. PubMed PMID: 17079689; PubMed Central PMCID: PMCPMC1620020.
  91. 91.
    Wang X, Pasolli HA, Williams T, Fuchs E. AP-2 factors act in concert with Notch to orchestrate terminal differentiation in skin epidermis. J Cell Biol. 2008;183(1):37–48. doi: https://doi.org/10.1083/jcb.200804030. jcb.200804030 [pii]. Epub 2008/10/01. PubMed PMID: 18824566; PubMed Central PMCID: PMCPMC2557040.
  92. 92.
    Baxter RM, Brissette JL. Role of the nude gene in epithelial terminal differentiation. J Invest Dermatol 2002;118(2):303–309. doi: https://doi.org/10.1046/j.0022-202x.2001.01662.x. 1662 [pii]. Epub 2002/02/14. PubMed PMID: 11841548.
  93. 93.
    Koster MI, Kim S, Huang J, Williams T, Roop DR. TAp63alpha induces AP-2gamma as an early event in epidermal morphogenesis. Dev Biol 2006;289(1):253–261. doi: https://doi.org/10.1016/j.ydbio.2005.10.041. Epub 2005/12/06. S0012-1606(05)00769-4 [pii]. PubMed PMID: 16324689.
  94. 94.
    Kalinin AE, Kajava AV, Steinert PM. Epithelial barrier function: assembly and structural features of the cornified cell envelope. BioEssays 2002;24(9):789–800. doi: https://doi.org/10.1002/bies.10144. Epub 2002/09/05. PubMed PMID: 12210515.
  95. 95.
    Brown SJ, Tilli CM, Jackson B, Avilion AA, MacLeod MC, Maltais LJ, et al. Rodent Lce gene clusters; new nomenclature, gene organization, and divergence of human and rodent genes. J Invest Dermatol 2007;127(7):1782–1786. doi: https://doi.org/10.1038/sj.jid.5700792. 5700792 [pii]. Epub 2007/04/06. PubMed PMID: 17410201.
  96. 96.
    Kypriotou M, Huber M, Hohl D. The human epidermal differentiation complex: cornified envelope precursors, S100 proteins and the ‘fused genes’ family. Exp Dermatol 2012;21(9):643–649. doi:  https://doi.org/10.1111/j.1600-0625.2012.01472.x. Epub 2012/04/18. PubMed PMID: 22507538.
  97. 97.
    Patel S, Xi ZF, Seo EY, McGaughey D, Segre JA. Klf4 and corticosteroids activate an overlapping set of transcriptional targets to accelerate in utero epidermal barrier acquisition. Proc Natl Acad Sci U S A. 2006;103(49):18668–73. doi:  https://doi.org/10.1073/pnas.0608658103. 0608658103 [pii]. Epub 2006/11/30. PubMed PMID: 17130451; PubMed Central PMCID: PMCPMC1693720.
  98. 98.
    Sen GL, Boxer LD, Webster DE, Bussat RT, Qu K, Zarnegar BJ, et al. ZNF750 is a p63 target gene that induces KLF4 to drive terminal epidermal differentiation. Dev Cell. 2012;22(3):669–77. doi: https://doi.org/10.1016/j.devcel.2011.12.001. S1534-5807(11)00567-3 [pii]. Epub 2012/03/01. PubMed PMID: 22364861; PubMed Central PMCID: PMCPMC3306457.
  99. 99.
    Indra AK, Dupe V, Bornert JM, Messaddeq N, Yaniv M, Mark M, et al. Temporally controlled targeted somatic mutagenesis in embryonic surface ectoderm and fetal epidermal keratinocytes unveils two distinct developmental functions of BRG1 in limb morphogenesis and skin barrier formation. Development. 2005;132(20):4533–44. doi: https://doi.org/10.1242/dev.02019. 132/20/4533 [pii]. Epub 2005/09/30. PubMed PMID: 16192310.
  100. 100.
    Kashiwagi M, Morgan BA, Georgopoulos K. The chromatin remodeler Mi-2beta is required for establishment of the basal epidermis and normal differentiation of its progeny. Development 2007;134(8):1571–1582. doi:  https://doi.org/10.1242/dev.001750. dev.001750 [pii]. Epub 2007/03/16. PubMed PMID: 17360773.
  101. 101.
    Sen GL, Webster DE, Barragan DI, Chang HY, Khavari PA. Control of differentiation in a self-renewing mammalian tissue by the histone demethylase JMJD3. Genes Dev. 2008;22(14):1865–70. doi:  https://doi.org/10.1101/gad.1673508. 22/14/1865 [pii]. Epub 2008/07/17. PubMed PMID: 18628393; PubMed Central PMCID: PMCPMC2492733.
  102. 102.
    Sen GL, Reuter JA, Webster DE, Zhu L, Khavari PA. DNMT1 maintains progenitor function in self-renewing somatic tissue. Nature. 2010;463(7280):563–7. doi:  https://doi.org/10.1038/nature08683. nature08683 [pii]. Epub 2010/01/19. PubMed PMID: 20081831; PubMed Central PMCID: PMCPMC3050546.
  103. 103.
    Ezhkova E, Lien WH, Stokes N, Pasolli HA, Silva JM, Fuchs E. EZH1 and EZH2 cogovern histone H3K27 trimethylation and are essential for hair follicle homeostasis and wound repair. Genes Dev. 2011;25(5):485–98. doi: https://doi.org/10.1101/gad.2019811. Epub 2011/02/15. gad.2019811 [pii]. PubMed PMID: 21317239; PubMed Central PMCID: PMCPMC3049289.
  104. 104.
    Ezhkova E, Pasolli HA, Parker JS, Stokes N, Su IH, Hannon G, et al. Ezh2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells. Cell. 2009;136(6):1122–35. doi: https://doi.org/10.1016/j.cell.2008.12.043. S0092-8674(09)00006-3 [pii]. Epub 2009/03/24. PubMed PMID: 19303854; PubMed Central PMCID: PMCPMC2716120.
  105. 105.
    Mejetta S, Morey L, Pascual G, Kuebler B, Mysliwiec MR, Lee Y, et al. Jarid2 regulates mouse epidermal stem cell activation and differentiation. EMBO J. 2011;30(17):3635–46. doi:  https://doi.org/10.1038/emboj.2011.265. emboj2011265 [pii]. Epub 2011/08/04. PubMed PMID: 21811233; PubMed Central PMCID: PMCPMC3181486.
  106. 106.
    Luis NM, Morey L, Mejetta S, Pascual G, Janich P, Kuebler B, et al. Regulation of human epidermal stem cell proliferation and senescence requires polycomb- dependent and -independent functions of Cbx4. Cell Stem Cell 2011;9(3):233–246. doi: https://doi.org/10.1016/j.stem.2011.07.013. S1934-5909(11)00343-2 [pii]. Epub 2011/09/03. PubMed PMID: 21885019.
  107. 107.
    Driskell I, Oda H, Blanco S, Nascimento E, Humphreys P, Frye M. The histone methyltransferase Setd8 acts in concert with c-Myc and is required to maintain skin. EMBO J. 2012;31(3):616–29. doi:  https://doi.org/10.1038/emboj.2011.421. emboj2011421 [pii]. Epub 2011/11/26. PubMed PMID: 22117221; PubMed Central PMCID: PMCPMC3273381.
  108. 108.
    Van Exan RJ, Hardy MH. A spatial relationship between innervation and the early differentiation of vibrissa follicles in the embryonic mouse. J Anat. 1980;131(Pt 4):643–56. Epub 1980/12/01. PubMed PMID: 7216903; PubMed Central PMCID: PMCPMC1233217.Google Scholar
  109. 109.
    Veltmaat JM, Mailleux AA, Thiery JP, Bellusci S. Mouse embryonic mammogenesis as a model for the molecular regulation of pattern formation. Differentiation 2003;71(1):1–17. doi: https://doi.org/10.1046/j.1432-0436.2003.700601.x. S0301-4681(09)60262-0 [pii]. Epub 2003/02/01. PubMed PMID: 12558599.
  110. 110.
    Paus R, Muller-Rover S, Van Der Veen C, Maurer M, Eichmuller S, Ling G, et al. A comprehensive guide for the recognition and classification of distinct stages of hair follicle morphogenesis. J Invest Dermatol 1999;113(4):523–532. doi:  https://doi.org/10.1046/j.1523-1747.1999.00740.x. Epub 1999/10/03. jid740 [pii]. PubMed PMID: 10504436.
  111. 111.
    Kunisada M, Cui CY, Piao Y, Ko MS, Schlessinger D. Requirement for Shh and Fox family genes at different stages in sweat gland development. Hum Mol Genet. 2009;18(10):1769–78. doi:  https://doi.org/10.1093/hmg/ddp089. ddp089 [pii]. Epub 2009/03/10. PubMed PMID: 19270025; PubMed Central PMCID: PMCPMC2671986.
  112. 112.
    Mikkola ML, Millar SE. The mammary bud as a skin appendage: unique and shared aspects of development. J Mammary Gland Biol Neoplasia 2006;11(3–4):187–203. doi:  https://doi.org/10.1007/s10911-006-9029-x. Epub 2006/11/18. PubMed PMID: 17111222.
  113. 113.
    Dhouailly D. A new scenario for the evolutionary origin of hair, feather, and avian scales. J Anat. 2009;214(4):587–606. doi:  https://doi.org/10.1111/j.1469-7580.2008.01041.x. JOA1041 [pii]. Epub 2009/05/09. PubMed PMID: 19422430; PubMed Central PMCID: PMCPMC2736124.
  114. 114.
    Widelitz RB, Baker RE, Plikus M, Lin CM, Maini PK, Paus R, et al. Distinct mechanisms underlie pattern formation in the skin and skin appendages. Birth Defects Res C Embryo Today 2006;78(3):280–291. doi:  https://doi.org/10.1002/bdrc.20075. Epub 2006/10/25. PubMed PMID: 17061271.
  115. 115.
    Rendl M, Lewis L, Fuchs E. Molecular dissection of mesenchymal-epithelial interactions in the hair follicle. PLoS Biol. 2005;3(11):e331. doi:  https://doi.org/10.1371/journal.pbio.0030331. 05-PLBI-RA-0332R1 [pii]. Epub 2005/09/16. PubMed PMID: 16162033; PubMed Central PMCID: PMCPMC1216328.
  116. 116.
    Lu CP, Polak L, Rocha AS, Pasolli HA, Chen SC, Sharma N, et al. Identification of stem cell populations in sweat glands and ducts reveals roles in homeostasis and wound repair. Cell. 2012;150(1):136–50. doi:  https://doi.org/10.1016/j.cell.2012.04.045. S0092-8674(12)00647-2 [pii]. Epub 2012/07/10. PubMed PMID: 22770217; PubMed Central PMCID: PMCPMC3423199.
  117. 117.
    Oftedal OT, Dhouailly D. Evo-devo of the mammary gland. J Mammary Gland Biol Neoplasia 2013;18(2):105–120. doi:  https://doi.org/10.1007/s10911-013-9290-8. Epub 2013/05/18. PubMed PMID: 23681303.
  118. 118.
    Sengel P. Pattern formation in skin development. Int J Dev Biol 1990;34(1):33–50. Epub 1990/03/01. PubMed PMID: 2203463.Google Scholar
  119. 119.
    Viallet JP, Dhouailly D. Retinoic acid and mouse skin morphogenesis. II. Role of epidermal competence in hair glandular metaplasia. Dev Biol 1994;166(1):277–288. doi:  https://doi.org/10.1006/dbio.1994.1314. S0012-1606(84)71314-5 [pii]. Epub 1994/11/01. PubMed PMID: 7958452.
  120. 120.
    Jahoda CA, Horne KA, Oliver RF. Induction of hair growth by implantation of cultured dermal papilla cells. Nature 1984;311(5986):560–562. Epub 1984/10/11. PubMed PMID: 6482967.Google Scholar
  121. 121.
    Plikus M, Wang WP, Liu J, Wang X, Jiang TX, Chuong CM. Morpho-regulation of ectodermal organs: integument pathology and phenotypic variations in K14-Noggin engineered mice through modulation of bone morphogenic protein pathway. Am J Pathol. 2004;164(3):1099–114. doi:  https://doi.org/10.1016/S0002-9440(10)63197-5. S0002-9440(10)63197-5 [pii]. Epub 2004/02/26. PubMed PMID: 14982863; PubMed Central PMCID: PMCPMC1614723.
  122. 122.
    Ahtiainen L, Lefebvre S, Lindfors PH, Renvoise E, Shirokova V, Vartiainen MK, et al. Directional cell migration, but not proliferation, drives hair placode morphogenesis. Dev Cell 2014;28(5):588–602. doi:  https://doi.org/10.1016/j.devcel.2014.02.003. PubMed PMID: 24636260.
  123. 123.
    Duverger O, Morasso MI. Role of homeobox genes in the patterning, specification, and differentiation of ectodermal appendages in mammals. J Cell Physiol. 2008;216(2):337–46. doi:  https://doi.org/10.1002/jcp.21491. Epub 2008/05/07. PubMed PMID: 18459147; PubMed Central PMCID: PMCPMC2561923.
  124. 124.
    Cowin P, Wysolmerski J. Molecular mechanisms guiding embryonic mammary gland development. Cold Spring Harb Perspect Biol. 2010;2(6):a003251. doi:  https://doi.org/10.1101/cshperspect.a003251. Epub 2010/05/21. cshperspect.a003251 [pii]. PubMed PMID: 20484386; PubMed Central PMCID: PMCPMC2869520.
  125. 125.
    Sick S, Reinker S, Timmer J, Schlake T. WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism. Science 2006;314(5804):1447–1450. doi: https://doi.org/10.1126/science.1130088. 1130088 [pii]. Epub 2006/11/04. PubMed PMID: 17082421.
  126. 126.
    Kondo S, Miura T. Reaction-diffusion model as a framework for understanding biological pattern formation. Science 2010;329(5999):1616–1620. doi: https://doi.org/10.1126/science.1179047. 329/5999/1616 [pii]. Epub 2010/10/12. PubMed PMID: 20929839.
  127. 127.
    Jiang TX, Jung HS, Widelitz RB, Chuong CM. Self-organization of periodic patterns by dissociated feather mesenchymal cells and the regulation of size, number and spacing of primordia. Development 1999;126(22):4997–5009. Epub 1999/10/26. PubMed PMID: 10529418.Google Scholar
  128. 128.
    Botchkarev VA, Botchkareva NV, Roth W, Nakamura M, Chen LH, Herzog W, et al. Noggin is a mesenchymally derived stimulator of hair-follicle induction. Nat Cell Biol 1999;1(3):158–164. doi:  https://doi.org/10.1038/11078. Epub 1999/11/13. PubMed PMID: 10559902.
  129. 129.
    Andl T, Reddy ST, Gaddapara T, Millar SE. WNT signals are required for the initiation of hair follicle development. Dev Cell 2002;2(5):643–653. Epub 2002/05/23. doi: S1534580702001673 [pii]. PubMed PMID: 12015971.Google Scholar
  130. 130.
    Botchkarev VA, Botchkareva NV, Sharov AA, Funa K, Huber O, Gilchrest BA. Modulation of BMP signaling by noggin is required for induction of the secondary (nontylotrich) hair follicles. J Invest Dermatol 2002;118(1):3–10. doi: https://doi.org/10.1046/j.1523-1747.2002.01645.x. 1645 [pii]. Epub 2002/02/20. PubMed PMID: 11851869.
  131. 131.
    Huang J, Dattilo LK, Rajagopal R, Liu Y, Kaartinen V, Mishina Y, et al. FGF-regulated BMP signaling is required for eyelid closure and to specify conjunctival epithelial cell fate. Development. 2009;136(10):1741–50. doi:  https://doi.org/10.1242/dev.034082. dev.034082 [pii]. Epub 2009/04/17. PubMed PMID: 19369394; PubMed Central PMCID: PMCPMC2673764.
  132. 132.
    Mikkola ML. Genetic basis of skin appendage development. Semin Cell Dev Biol. 2007;18:225–36.CrossRefPubMedGoogle Scholar
  133. 133.
    Eivers E, Fuentealba LC, De Robertis EM. Integrating positional information at the level of Smad1/5/8. Curr Opin Genet Dev. 2008;18(4):304–10. Epub 2008/07/02. doi:  https://doi.org/10.1016/j.gde.2008.06.001. S0959-437X(08)00069-5 [pii]. PubMed PMID: 18590818; PubMed Central PMCID: PMCPMC3033225.
  134. 134.
    Plouhinec JL, Zakin L, De Robertis EM. Systems control of BMP morphogen flow in vertebrate embryos. Curr Opin Genet Dev. 2011;21(6):696–703. Epub 2011/09/23. doi:  https://doi.org/10.1016/j.gde.2011.09.001. S0959-437X(11)00136-5 [pii]. PubMed PMID: 21937218; PubMed Central PMCID: PMCPMC3224208.
  135. 135.
    Mou C, Jackson B, Schneider P, Overbeek PA, Headon DJ. Generation of the primary hair follicle pattern. Proc Natl Acad Sci U S A. 2006;103(24):9075–80. doi:  https://doi.org/10.1073/pnas.0600825103. Epub 2006/06/14. 0600825103 [pii]. PubMed PMID: 16769906; PubMed Central PMCID: PMCPMC1482568.
  136. 136.
    Zhang Y, Tomann P, Andl T, Gallant NM, Huelsken J, Jerchow B, et al. Reciprocal requirements for EDA/EDAR/NF-kappaB and Wnt/beta-catenin signaling pathways in hair follicle induction. Dev Cell. 2009;17(1):49–61. doi:  https://doi.org/10.1016/j.devcel.2009.05.011. S1534-5807(09)00213-5 [pii]. Epub 2009/07/22. PubMed PMID: 19619491; PubMed Central PMCID: PMCPMC2859042.
  137. 137.
    Pummila M, Fliniaux I, Jaatinen R, James MJ, Laurikkala J, Schneider P, et al. Ectodysplasin has a dual role in ectodermal organogenesis: inhibition of Bmp activity and induction of Shh expression. Development. 2007;134(1):117–25.CrossRefPubMedGoogle Scholar
  138. 138.
    Chiang C, Swan RZ, Grachtchouk M, Bolinger M, Litingtung Y, Robertson EK, et al. Essential role for Sonic hedgehog during hair follicle morphogenesis. Dev Biol. 1999;205(1):1–9.CrossRefPubMedGoogle Scholar
  139. 139.
    St_Jacques B, Dassule HR, Karavanova I, Botchkarev VA, Li J, Danielian PS, et al. Sonic hedgehog signaling is essential for hair development. Curr Biol. 1998;8(19):1058–68.CrossRefPubMedGoogle Scholar
  140. 140.
    Lu CP, Polak L, Keyes BE, Fuchs E. Spatiotemporal antagonism in mesenchymal-epithelial signaling in sweat versus hair fate decision. Science. 2016;354(6319). doi:  https://doi.org/10.1126/science.aah6102. PubMed PMID: 28008008; PubMed Central PMCID: PMCPMC5333576.
  141. 141.
    Lee MY, Sun L, Veltmaat JM. Hedgehog and Gli signaling in embryonic mammary gland development. J Mammary Gland Biol Neoplasia. 2013;18(2):133–8. doi:  https://doi.org/10.1007/s10911-013-9291-7. Epub 2013/05/17. PubMed PMID: 23677624; PubMed Central PMCID: PMCPMC3691482.
  142. 142.
    Rhee H, Polak L, Fuchs E. Lhx2 maintains stem cell character in hair follicles. Science. 2006;312:1946–99.CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Nowak JA, Polak L, Pasolli HA, Fuchs E. Hair follicle stem cells are specified and function in early skin morphogenesis. Cell Stem Cell. 2008;3(1):33–43. doi:  https://doi.org/10.1016/j.stem.2008.05.009. S1934-5909(08)00223-3 [pii]. Epub 2008/07/03. PubMed PMID: 18593557; PubMed Central PMCID: PMCPMC2877596.
  144. 144.
    Langbein L, Schweizer J. Keratins of the human hair follicle. Int Rev Cytol 2005;243:1–78. doi: https://doi.org/10.1016/S0074-7696(05)43001-6. S0074769605430016 [pii]. Epub 2005/03/31. PubMed PMID: 15797458.
  145. 145.
    Rogers MA, Langbein L, Praetzel-Wunder S, Winter H, Schweizer J. Human hair keratin-associated proteins (KAPs). Int Rev Cytol 2006;251:209–263. doi: https://doi.org/10.1016/S0074-7696(06)51006-X. S0074-7696(06)51006-X [pii]. Epub 2006/08/31. PubMed PMID: 16939781.
  146. 146.
    Luetteke NC, Qiu TH, Peiffer RL, Oliver P, Smithies O, Lee DC. TGF alpha deficiency results in hair follicle and eye abnormalities in targeted and waved-1 mice. Cell 1993;73(2):263–278. Epub 1993/04/23. doi: 0092-8674(93)90228-I [pii]. PubMed PMID: 8477445.Google Scholar
  147. 147.
    Luetteke NC, Phillips HK, Qiu TH, Copeland NG, Earp HS, Jenkins NA, et al. The mouse waved-2 phenotype results from a point mutation in the EGF receptor tyrosine kinase. Genes Dev 1994;8(4):399–413. Epub 1994/02/15. PubMed PMID: 8125255.Google Scholar
  148. 148.
    Peschon JJ, Slack JL, Reddy P, Stocking KL, Sunnarborg SW, Lee DC, et al. An essential role for ectodomain shedding in mammalian development. Science 1998;282(5392):1281–1284. Epub 1998/11/13. PubMed PMID: 9812885.Google Scholar
  149. 149.
    Inoue A, Arima N, Ishiguro J, Prestwich GD, Arai H, Aoki J. LPA-producing enzyme PA-PLA(1)alpha regulates hair follicle development by modulating EGFR signalling. EMBO J. 2011;30(20):4248–60. doi:  https://doi.org/10.1038/emboj.2011.296. emboj2011296 [pii]. Epub 2011/08/23. PubMed PMID: 21857648; PubMed Central PMCID: PMCPMC3199385.
  150. 150.
    Ellis T, Gambardella L, Horcher M, Tschanz S, Capol J, Bertram P, et al. The transcriptional repressor CDP (Cutl1) is essential for epithelial cell differentiation of the lung and the hair follicle. Genes & Development. 2001;15(17):2307–19. doi:  https://doi.org/10.1101/gad.200101. Epub 2001/09/07. PubMed PMID: 11544187; PubMed Central PMCID: PMCPMC312776.
  151. 151.
    Kobielak K, Pasolli HA, Alonso L, Polak L, Fuchs E. Defining BMP functions in the hair follicle by conditional ablation of BMP receptor IA. J Cell Biol. 2003;163:609–23.CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Kaufman CK, Zhou P, Pasolli HA, Rendl M, Bolotin D, Lim KC, et al. GATA-3: an unexpected regulator of cell lineage determination in skin. Genes Dev. 2003;17(17):2108–22. doi:  https://doi.org/10.1101/gad.1115203. Epub 2003/08/19. 1115203 [pii]. PubMed PMID: 12923059; PubMed Central PMCID: PMCPMC196453.
  153. 153.
    Hwang J, Mehrani T, Millar SE, Morasso MI. Dlx3 is a crucial regulator of hair follicle differentiation and cycling. Development. 2008;135(18):3149–59. doi:  https://doi.org/10.1242/dev.022202. dev.022202 [pii]. Epub 2008/08/08. PubMed PMID: 18684741; PubMed Central PMCID: PMCPMC2707782.
  154. 154.
    Ma L, Liu J, Wu T, Plikus M, Jiang TX, Bi Q, et al. ‘Cyclic alopecia’ in Msx2 mutants: defects in hair cycling and hair shaft differentiation. Development 2003;130(2):379–389. Epub 2002/12/06. PubMed PMID: 12466204.Google Scholar
  155. 155.
    Satokata I, Ma L, Ohshima H, Bei M, Woo I, Nishizawa K, et al. Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation. Nat Genet 2000;24(4):391–395. doi:  https://doi.org/10.1038/74231. Epub 2000/03/31. PubMed PMID: 10742104.
  156. 156.
    Cui CY, Childress V, Piao Y, Michel M, Johnson AA, Kunisada M, et al. Forkhead transcription factor FoxA1 regulates sweat secretion through Bestrophin 2 anion channel and Na-K-Cl cotransporter 1. Proc Natl Acad Sci USA. 2012;109(4):1199–203. doi:  https://doi.org/10.1073/pnas.1117213109. 1117213109 [pii]. Epub 2012/01/10. PubMed PMID: 22223659; PubMed Central PMCID: PMCPMC3268268.
  157. 157.
    Cui CY, Ishii R, Campbell DP, Michel M, Piao Y, Kume T, et al. Foxc1 Ablated Mice Are Anhidrotic and Recapitulate Features of Human Miliaria Sweat Retention Disorder. J Invest Dermatol. 2017;137(1):38–45. doi:  https://doi.org/10.1016/j.jid.2016.08.012. PubMed PMID: 27592801; PubMed Central PMCID: PMCPMC5183533.
  158. 158.
    Cotsarelis G. Epithelial stem cells: a folliculocentric view. J Invest Dermatol 2006;126(7):1459–1468. doi: https://doi.org/10.1038/sj.jid.5700376. 5700376 [pii]. Epub 2006/06/17. PubMed PMID: 16778814.
  159. 159.
    Goldstein J, Horsley V. Home sweet home: skin stem cell niches. Cell Mol Life Sci. 2012;69(15):2573–82. doi:  https://doi.org/10.1007/s00018-012-0943-3. Epub 2012/03/14. PubMed PMID: 22410738; PubMed Central PMCID: PMCPMC3449145.
  160. 160.
    Jaks V, Kasper M, Toftgard R. The hair follicle-a stem cell zoo. Exp Cell Res 2010;316(8):1422–1428. doi:  https://doi.org/10.1016/j.yexcr.2010.03.014. S0014-4827(10)00121-7 [pii]. Epub 2010/03/27. PubMed PMID: 20338163..
  161. 161.
    Beck B, Blanpain C. Mechanisms regulating epidermal stem cells. EMBO J. 2012;31(9):2067–75. doi: https://doi.org/10.1038/emboj.2012.67. emboj201267 [pii]. Epub 2012/03/22. PubMed PMID: 22433839; PubMed Central PMCID: PMCPMC3343465.
  162. 162.
    Van Keymeulen A, Blanpain C. Tracing epithelial stem cells during development, homeostasis, and repair. J Cell Biol. 2012;197(5):575–84. doi:  https://doi.org/10.1083/jcb.201201041. jcb.201201041 [pii]. Epub 2012/05/30. PubMed PMID: 22641343; PubMed Central PMCID: PMCPMC3365500.
  163. 163.
    Fujiwara H, Ferreira M, Donati G, Marciano DK, Linton JM, Sato Y, et al. The basement membrane of hair follicle stem cells is a muscle cell niche. Cell. 2011;144(4):577–89. doi:  https://doi.org/10.1016/j.cell.2011.01.014. Epub 2011/02/22. S0092-8674(11)00015-8 [pii]. PubMed PMID: 21335239; PubMed Central PMCID: PMCPMC3056115.
  164. 164.
    Osawa M, Egawa G, Mak SS, Moriyama M, Freter R, Yonetani S, et al. Molecular characterization of melanocyte stem cells in their niche. Development. 2005;132(24):5589–99. doi:  https://doi.org/10.1242/dev.02161. 132/24/5589 [pii]. Epub 2005/11/30. PubMed PMID: 16314490.
  165. 165.
    Hunt DP, Jahoda C, Chandran S. Multipotent skin-derived precursors: from biology to clinical translation. Curr Opin Biotechnol 2009;20(5):522–530. doi: https://doi.org/10.1016/j.copbio.2009.10.004. S0958-1669(09)00132-3 [pii]. Epub 2009/11/10. PubMed PMID: 19896826.
  166. 166.
    Fuchs E, Chen T. A matter of life and death: self-renewal in stem cells. EMBO Rep. 2013;14(1):39–48. doi:  https://doi.org/10.1038/embor.2012.197. embor2012197 [pii]. Epub 2012/12/12. PubMed PMID: 23229591; PubMed Central PMCID: PMCPMC3537149.
  167. 167.
    Mascre G, Dekoninck S, Drogat B, Youssef KK, Brohee S, Sotiropoulou PA, et al. Distinct contribution of stem and progenitor cells to epidermal maintenance. Nature 2012;489(7415):257–262. doi:  https://doi.org/10.1038/nature11393. nature11393 [pii]. Epub 2012/09/04. PubMed PMID: 22940863.
  168. 168.
    Cotsarelis G, Sun TT, Lavker RM. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 1990;61(7):1329–1337. doi: 0092-8674(90)90696-C [pii]. Epub 1990/06/29. PubMed PMID: 2364430.Google Scholar
  169. 169.
    Morris RJ, Liu Y, Marles L, Yang Z, Trempus C, Li S, et al. Capturing and profiling adult hair follicle stem cells. Nat Biotechnol 2004;22(4):411–417. doi:  https://doi.org/10.1038/nbt950. nbt950 [pii]. Epub 2004/03/17. PubMed PMID: 15024388.
  170. 170.
    Tumbar T, Guasch G, Greco V, Blanpain C, Lowry WE, Rendl M, et al. Defining the epithelial stem cell niche in skin. Science. 2004;303(5656):359–63. doi:  https://doi.org/10.1126/science.1092436. 1092436 [pii]. Epub 2003/12/13. PubMed PMID: 14671312; PubMed Central PMCID: PMCPMC2405920.
  171. 171.
    Horsley V, Aliprantis AO, Polak L, Glimcher LH, Fuchs E. NFATc1 balances quiescence and proliferation of skin stem cells. Cell. 2008;132(2):299–310. doi:  https://doi.org/10.1016/j.cell.2007.11.047. S0092-8674(07)01614-5 [pii]. Epub 2008/02/05. PubMed PMID: 18243104; PubMed Central PMCID: PMCPMC2546702.
  172. 172.
    Nguyen H, Rendl M, Fuchs E. Tcf3 governs stem cell features and represses cell fate determination in skin. Cell 2006;127(1):171–183. doi: https://doi.org/10.1016/j.cell.2006.07.036. S0092-8674(06)01162-7 [pii]. Epub 2006/10/05. PubMed PMID: 17018284.
  173. 173.
    Nijhof JG, Braun KM, Giangreco A, van Pelt C, Kawamoto H, Boyd RL, et al. The cell-surface marker MTS24 identifies a novel population of follicular keratinocytes with characteristics of progenitor cells. Development 2006;133(15):3027–3037. doi:  https://doi.org/10.1242/dev.02443. dev.02443 [pii]. Epub 2006/07/05. PubMed PMID: 16818453.
  174. 174.
    Jensen KB, Collins CA, Nascimento E, Tan DW, Frye M, Itami S, et al. Lrig1 expression defines a distinct multipotent stem cell population in mammalian epidermis. Cell Stem Cell. 2009;4(5):427–39. doi:  https://doi.org/10.1016/j.stem.2009.04.014. S1934-5909(09)00168-4 [pii]. Epub 2009/05/12. PubMed PMID: 19427292; PubMed Central PMCID: PMCPMC2698066.
  175. 175.
    Snippert HJ, Haegebarth A, Kasper M, Jaks V, van Es JH, Barker N, et al. Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science 2010;327(5971):1385–1389. doi:  https://doi.org/10.1126/science.1184733.327/5971/1385 [pii]. Epub 2010/03/13. PubMed PMID: 20223988.
  176. 176.
    Horsley V, O’Carroll D, Tooze R, Ohinata Y, Saitou M, Obukhanych T, et al. Blimp1 defines a progenitor population that governs cellular input to the sebaceous gland. Cell. 2006;126(3):597–609. doi:  https://doi.org/10.1016/j.cell.2006.06.048. S0092-8674(06)00971-8 [pii]. Epub 2006/08/12. PubMed PMID: 16901790; PubMed Central PMCID: PMCPMC2424190.
  177. 177.
    Jaks V, Barker N, Kasper M, van Es JH, Snippert HJ, Clevers H, et al. Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat Genet 2008;40(11):1291–1299. doi:  https://doi.org/10.1038/ng.239. ng.239 [pii]. Epub 2008/10/14. PubMed PMID: 18849992.
  178. 178.
    Greco V, Chen T, Rendl M, Schober M, Pasolli HA, Stokes N, et al. A two-step mechanism for stem cell activation during hair regeneration. Cell Stem Cell. 2009;4(2):155–69. doi:  https://doi.org/10.1016/j.stem.2008.12.009. S1934-5909(08)00626-7 [pii]. Epub 2009/02/10. PubMed PMID: 19200804; PubMed Central PMCID: PMCPMC2668200.
  179. 179.
    Panteleyev AA, Jahoda CA, Christiano AM. Hair follicle predetermination. J Cell Sci 2001;114(Pt 19):3419–3431. PubMed PMID: 21538920..Google Scholar
  180. 180.
    Oshima H, Rochat A, Kedzia C, Kobayashi K, Barrandon Y. Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell. 2001;104(2):233–45.CrossRefPubMedGoogle Scholar
  181. 181.
    Ito M, Liu Y, Yang Z, Nguyen J, Liang F, Morris RJ, et al. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med 2005;11(12):1351–1354. doi: https://doi.org/10.1038/nm1328. nm1328 [pii]. Epub 2005/11/17. PubMed PMID: 16288281.
  182. 182.
    Page ME, Lombard P, Ng F, Gottgens B, Jensen KB. The epidermis comprises autonomous compartments maintained by distinct stem cell populations. Cell Stem Cell. 2013. doi:  https://doi.org/10.1016/j.stem.2013.07.010. S1934-5909(13)00318-4 [pii]. Epub 2013/08/21. PubMed PMID: 23954751.
  183. 183.
    Lien WH, Guo X, Polak L, Lawton LN, Young RA, Zheng D, et al. Genome-wide maps of histone modifications unwind in vivo chromatin states of the hair follicle lineage. Cell Stem Cell. 2011;9(3):219–32. doi:  https://doi.org/10.1016/j.stem.2011.07.015. S1934-5909(11)00378-X [pii]. Epub 2011/09/03. PubMed PMID: 21885018; PubMed Central PMCID: PMCPMC3166618.
  184. 184.
    Lee J, Kang S, Lilja KC, Colletier KJ, Scheitz CJ, Zhang YV, et al. Signalling couples hair follicle stem cell quiescence with reduced histone H3 K4/K9/K27me3 for proper tissue homeostasis. Nat Commun. 2016;7:11278. doi:  https://doi.org/10.1038/ncomms11278. PubMed PMID: 27080563; PubMed Central PMCID: PMCPMC4835553.
  185. 185.
    Kasper M, Jaks V, Are A, Bergstrom A, Schwager A, Svard J, et al. Wounding enhances epidermal tumorigenesis by recruiting hair follicle keratinocytes. Proc Natl Acad Sci U S A. 2011;108(10):4099–104. doi:  https://doi.org/10.1073/pnas.1014489108. 1014489108 [pii]. Epub 2011/02/16. PubMed PMID: 21321199; PubMed Central PMCID: PMCPMC3054016.
  186. 186.
    Mardaryev AN, Meier N, Poterlowicz K, Sharov AA, Sharova TY, Ahmed MI, et al. Lhx2 differentially regulates Sox9, Tcf4 and Lgr5 in hair follicle stem cells to promote epidermal regeneration after injury. Development 2011;138(22):4843–4852. doi:  https://doi.org/10.1242/dev.070284.138/22/4843 [pii]. Epub 2011/10/27. PubMed PMID: 22028024.
  187. 187.
    Van Keymeulen A, Rocha AS, Ousset M, Beck B, Bouvencourt G, Rock J, et al. Distinct stem cells contribute to mammary gland development and maintenance. Nature 2011;479(7372):189–193. doi: https://doi.org/10.1038/nature10573. nature10573 [pii]. Epub 2011/10/11. PubMed PMID: 21983963.
  188. 188.
    Botchkareva NV, Khlgatian M, Longley BJ, Botchkarev VA, Gilchrest BA. SCF/c-kit signaling is required for cyclic regeneration of the hair pigmentation unit. FASEB J 2001;15(3):645–658. doi:  https://doi.org/10.1096/fj.00-0368com.15/3/645. [pii]. Epub 2001/03/22. PubMed PMID: 11259383.
  189. 189.
    Nishimura EK, Jordan SA, Oshima H, Yoshida H, Osawa M, Moriyama M, et al. Dominant role of the niche in melanocyte stem-cell fate determination. Nature 2002;416(6883):854–860. doi:  https://doi.org/10.1038/416854a. 416854a [pii]. Epub 2002/04/27. PubMed PMID: 11976685.
  190. 190.
    Botchkareva NV, Botchkarev VA, Gilchrest BA. Fate of melanocytes during development of the hair follicle pigmentary unit. J Investig Dermatol Symp Proc 2003;8(1):76–79. doi:  https://doi.org/10.1046/j.1523-1747.2003.12176.x. Epub 2003/08/05. PubMed PMID: 12894999.
  191. 191.
    Tanimura S, Tadokoro Y, Inomata K, Binh NT, Nishie W, Yamazaki S, et al. Hair follicle stem cells provide a functional niche for melanocyte stem cells. Cell Stem Cell 2011;8(2):177–187. doi:  https://doi.org/10.1016/j.stem.2010.11.029. S1934-5909(10)00651-X [pii]. Epub 2011/02/08. PubMed PMID: 21295274.
  192. 192.
    Nishimura EK, Suzuki M, Igras V, Du J, Lonning S, Miyachi Y, et al. Key roles for transforming growth factor beta in melanocyte stem cell maintenance. Cell Stem Cell. 2010;6(2):130–40. doi:  https://doi.org/10.1016/j.stem.2009.12.010. S1934-5909(09)00633-X [pii]. Epub 2010/02/11. PubMed PMID: 20144786; PubMed Central PMCID: PMCPMC3437996.
  193. 193.
    Rabbani P, Takeo M, Chou W, Myung P, Bosenberg M, Chin L, et al. Coordinated activation of Wnt in epithelial and melanocyte stem cells initiates pigmented hair regeneration. Cell 2011;145(6):941–955. doi: https://doi.org/10.1016/j.cell.2011.05.004. S0092-8674(11)00530-7 [pii]. Epub 2011/06/15. PubMed PMID: 21663796.
  194. 194.
    Chou WC, Takeo M, Rabbani P, Hu H, Lee W, Chung YR, et al. Direct migration of follicular melanocyte stem cells to the epidermis after wounding or UVB irradiation is dependent on Mc1r signaling. Nat Med 2013;19(7):924–929. doi:  https://doi.org/10.1038/nm.3194. nm.3194 [pii]. Epub 2013/06/12. PubMed PMID: 23749232.
  195. 195.
    Richardson GD, Arnott EC, Whitehouse CJ, Lawrence CM, Reynolds AJ, Hole N, et al. Plasticity of rodent and human hair follicle dermal cells: implications for cell therapy and tissue engineering. J Investig Dermatol Symp Proc 2005;10(3):180–183. doi: https://doi.org/10.1111/j.1087-0024.2005.10101.x. Epub 2005/12/31. PubMed PMID: 16382659.
  196. 196.
    Waters JM, Richardson GD, Jahoda CA. Hair follicle stem cells. Semin Cell Dev Biol 2007;18(2):245–254. doi:  https://doi.org/10.1016/j.semcdb.2007.02.003. S1084-9521(07)00036-5 [pii]. Epub 2007/05/08. PubMed PMID: 17481931.
  197. 197.
    Reynolds AJ, Lawrence C, Cserhalmi-Friedman PB, Christiano AM, Jahoda CA. Trans-gender induction of hair follicles. Nature 1999;402(6757):33–34. doi: https://doi.org/10.1038/46938. Epub 1999/11/26. PubMed PMID: 10573414.
  198. 198.
    Biernaskie J, Paris M, Morozova O, Fagan BM, Marra M, Pevny L, et al. SKPs derive from hair follicle precursors and exhibit properties of adult dermal stem cells. Cell Stem Cell. 2009;5(6):610–23. doi:  https://doi.org/10.1016/j.stem.2009.10.019. S1934-5909(09)00573-6 [pii]. Epub 2009/12/03. PubMed PMID: 19951689; PubMed Central PMCID: PMCPMC2828150.
  199. 199.
    Lako M, Armstrong L, Cairns PM, Harris S, Hole N, Jahoda CA. Hair follicle dermal cells repopulate the mouse haematopoietic system. J Cell Sci 2002;115(Pt 20):3967–3974. Epub 2002/09/24. PubMed PMID: 12244134.Google Scholar
  200. 200.
    Fernandes KJ, Kobayashi NR, Gallagher CJ, Barnabe-Heider F, Aumont A, Kaplan DR, et al. Analysis of the neurogenic potential of multipotent skin-derived precursors. Exp Neurol 2006;201(1):32–48. doi: https://doi.org/10.1016/j.expneurol.2006.03.018. Epub 2006/05/09. S0014-4886(06)00205-6 [pii]. PubMed PMID: 16678161.
  201. 201.
    McKenzie IA, Biernaskie J, Toma JG, Midha R, Miller FD. Skin-derived precursors generate myelinating Schwann cells for the injured and dysmyelinated nervous system. J Neurosci. 2006;26(24):6651–60. doi:  https://doi.org/10.1523/JNEUROSCI.1007-06.2006. 26/24/6651 [pii]. Epub 2006/06/16. PubMed PMID: 16775154.
  202. 202.
    Tsai SY, Bouwman BA, Ang YS, Kim SJ, Lee DF, Lemischka IR, et al. Single transcription factor reprogramming of hair follicle dermal papilla cells to induced pluripotent stem cells. Stem Cells 2011;29(6):964–971. doi:  https://doi.org/10.1002/stem.649. Epub 2011/05/13. PubMed PMID: 21563278.
  203. 203.
    Jahoda CA, Whitehouse J, Reynolds AJ, Hole N. Hair follicle dermal cells differentiate into adipogenic and osteogenic lineages. Exp Dermatol 2003;12(6):849–859. Epub 2004/01/13. PubMed PMID: 14714566.Google Scholar
  204. 204.
    Kumamoto T, Shalhevet D, Matsue H, Mummert ME, Ward BR, Jester JV, et al. Hair follicles serve as local reservoirs of skin mast cell precursors. Blood 2003;102(5):1654–1660. doi: https://doi.org/10.1182/blood-2003-02-0449. 2003-02-0449 [pii]. Epub 2003/05/10. PubMed PMID: 12738661.
  205. 205.
    Elliott K, Stephenson TJ, Messenger AG. Differences in hair follicle dermal papilla volume are due to extracellular matrix volume and cell number: implications for the control of hair follicle size and androgen responses. J Invest Dermatol 1999;113(6):873–877. doi: https://doi.org/10.1046/j.1523-1747.1999.00797.x. jid797 [pii]. Epub 1999/12/14. PubMed PMID: 10594724.
  206. 206.
    Jahoda CA, Reynolds AJ. Hair follicle dermal sheath cells: unsung participants in wound healing. Lancet 2001;358(9291):1445–1448. doi: https://doi.org/10.1016/S0140-6736(01)06532-1. S0140-6736(01)06532-1 [pii]. Epub 2001/11/14. PubMed PMID: 11705511.
  207. 207.
    Gharzi A, Reynolds AJ, Jahoda CA. Plasticity of hair follicle dermal cells in wound healing and induction. Exp Dermatol 2003;12(2):126–136. Epub 2003/04/19. doi: 106 [pii]. PubMed PMID: 12702140.Google Scholar
  208. 208.
    MacQuarrie KL, Fong AP, Morse RH, Tapscott SJ. Genome-wide transcription factor binding: beyond direct target regulation. Trends Genet. 2011;27(4):141–8. doi:  https://doi.org/10.1016/j.tig.2011.01.001. PubMed PMID: 21295369; PubMed Central PMCID: PMCPMC3068217.
  209. 209.
    Zaret KS, Mango SE. Pioneer transcription factors, chromatin dynamics, and cell fate control. Curr Opin Genet Dev. 2016;37:76–81. doi:  https://doi.org/10.1016/j.gde.2015.12.003. PubMed PMID: 26826681; PubMed Central PMCID: PMCPMC4914445.
  210. 210.
    Hnisz D, Shrinivas K, Young RA, Chakraborty AK, Sharp PA. A Phase Separation Model for Transcriptional Control. Cell. 2017;169(1):13–23. doi:  https://doi.org/10.1016/j.cell.2017.02.007. PubMed PMID: 28340338; PubMed Central PMCID: PMCPMC5432200.
  211. 211.
    Lanctot C, Cheutin T, Cremer M, Cavalli G, Cremer T. Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet. 2007;8(2):104–15.CrossRefPubMedGoogle Scholar
  212. 212.
    Misteli T. Beyond the sequence: cellular organization of genome function. Cell 2007;128(4):787–800. doi: https://doi.org/10.1016/j.cell.2007.01.028. Epub 2007/02/27. S0092-8674(07)00126-2 [pii]. PubMed PMID: 17320514.
  213. 213.
    Hubner MR, Spector DL. Chromatin dynamics. Annu Rev Biophys. 2010;39:471–89. Epub 2010/05/14. doi:  https://doi.org/10.1146/annurev.biophys.093008.131348. PubMed PMID: 20462379; PubMed Central PMCID: PMCPMC2894465.
  214. 214.
    Pederson T. The nucleus introduced. Cold Spring Harb Perspect Biol. 2011;3(5). doi:  https://doi.org/10.1101/cshperspect.a000521. a000521 [pii]. cshperspect.a000521 [pii]. Epub 2010/07/28. PubMed PMID: 20660024; PubMed Central PMCID: PMCPMC3101846.
  215. 215.
    Mao YS, Zhang B, Spector DL. Biogenesis and function of nuclear bodies. Trends Genet 2011;27(8):295–306. doi: https://doi.org/10.1016/j.tig.2011.05.006. Epub 2011/06/18. S0168-9525(11)00076-X [pii]. PubMed PMID: 21680045; PubMed Central PMCID: PMC3144265.
  216. 216.
    Gdula MR, Poterlowicz K, Mardaryev AN, Sharov AA, Peng Y, Fessing MY, et al. Remodelling of three-dimensional Organization of the Nucleus during Terminal Keratinocyte Differentiation in the epidermis. J Invest Dermatol. 2013. doi: https://doi.org/10.1038/jid.2013.66. jid201366 [pii]. Epub 2013/02/15. PubMed PMID: 23407401.
  217. 217.
    Dechat T, Adam SA, Taimen P, Shimi T, Goldman RD. Nuclear lamins. Cold Spring Harb Perspect Biol 2010;2(11):a000547. doi: https://doi.org/10.1101/cshperspect.a000547. Epub 2010/09/10. cshperspect.a000547 [pii]. PubMed PMID: 20826548.
  218. 218.
    Hetzer MW. The nuclear envelope. Cold Spring Harb Perspect Biol. 2010;2(3):a000539. doi:  https://doi.org/10.1101/cshperspect.a000539. Epub 2010/03/20. PubMed PMID: 20300205; PubMed Central PMCID: PMCPMC2829960.
  219. 219.
    Wilson KL, Foisner R. Lamin-binding Proteins. Cold Spring Harb Perspect Biol 2010;2(4):a000554. doi: https://doi.org/10.1101/cshperspect.a000554. Epub 2010/05/11. cshperspect.a000554 [pii]. PubMed PMID: 20452940.
  220. 220.
    Capelson M, Liang Y, Schulte R, Mair W, Wagner U, Hetzer MW. Chromatin-bound nuclear pore components regulate gene expression in higher eukaryotes. Cell. 2010;140(3):372–83. doi:  https://doi.org/10.1016/j.cell.2009.12.054. S0092–8674(09)01681-X [pii]. Epub 2010/02/11. PubMed PMID: 20144761; PubMed Central PMCID: PMCPMC2821818.
  221. 221.
    Hoelz A, Debler EW, Blobel G. The structure of the nuclear pore complex. Annu Rev Biochem 2011;80:613–643. doi:  https://doi.org/10.1146/annurev-biochem-060109-151030. Epub 2011/04/19. PubMed PMID: 21495847.
  222. 222.
    Neumann S, Schneider M, Daugherty RL, Gottardi CJ, Eming SA, Beijer A, et al. Nesprin-2 interacts with {alpha}-catenin and regulates Wnt signaling at the nuclear envelope. J Biol Chem. 2010;285(45):34932–8. doi:  https://doi.org/10.1074/jbc.M110.119651. M110.119651 [pii]. Epub 2010/08/31. PubMed PMID: 20801886; PubMed Central PMCID: PMCPMC2966107.
  223. 223.
    Kubben N, Voncken JW, Demmers J, Calis C, van Almen G, Pinto Y, et al. Identification of differential protein interactors of lamin A and progerin. Nucleus. 2010;1(6):513–25. doi:  https://doi.org/10.4161/nucl.1.6.13512. Epub 2011/02/18. PubMed PMID: 21327095; PubMed Central PMCID: PMCPMC3027055.
  224. 224.
    Constantinescu D, Gray HL, Sammak PJ, Schatten GP, Csoka AB. Lamin A/C expression is a marker of mouse and human embryonic stem cell differentiation. Stem Cells 2006;24(1):177–185. doi: https://doi.org/10.1634/stemcells.2004-0159. Epub 2005/09/24. 2004-0159 [pii]. PubMed PMID: 16179429.
  225. 225.
    Hanif M, Rosengardten Y, Sagelius H, Rozell B, Eriksson M. Differential expression of A-type and B-type lamins during hair cycling. PLoS One. 2009;4(1):e4114. doi:  https://doi.org/10.1371/journal.pone.0004114. Epub 2009/01/06. PubMed PMID: 19122810; PubMed Central PMCID: PMCPMC2606029.
  226. 226.
    Shevelyov YY, Lavrov SA, Mikhaylova LM, Nurminsky ID, Kulathinal RJ, Egorova KS, et al. The B-type lamin is required for somatic repression of testis-specific gene clusters. Proc Natl Acad Sci U S A. 2009;106(9):3282–7. doi: https://doi.org/10.1073/pnas.0811933106. Epub 2009/02/17. 0811933106 [pii]. PubMed PMID: 19218438; PubMed Central PMCID: PMCPMC2651240.
  227. 227.
    Pan D, Estevez-Salmeron LD, Stroschein SL, Zhu X, He J, Zhou S, et al. The integral inner nuclear membrane protein MAN1 physically interacts with the R-Smad proteins to repress signaling by the transforming growth factor-{beta} superfamily of cytokines. J Biol Chem 2005;280(16):15992–16001. doi: https://doi.org/10.1074/jbc.M411234200. Epub 2005/01/14. M411234200 [pii]. PubMed PMID: 15647271.
  228. 228.
    Markiewicz E, Tilgner K, Barker N, van de Wetering M, Clevers H, Dorobek M, et al. The inner nuclear membrane protein emerin regulates beta-catenin activity by restricting its accumulation in the nucleus. EMBO J. 2006;25(14):3275–85. doi:  https://doi.org/10.1038/sj.emboj.7601230. Epub 2006/07/22. 7601230 [pii]. PubMed PMID: 16858403; PubMed Central PMCID: PMCPMC1523183.
  229. 229.
    Worman HJ, Fong LG, Muchir A, Young SG. Laminopathies and the long strange trip from basic cell biology to therapy. J Clin Invest. 2009;119(7):1825–36. doi:  https://doi.org/10.1172/JCI37679. 37679 [pii]. Epub 2009/07/10. PubMed PMID: 19587457; PubMed Central PMCID: PMCPMC2701866.
  230. 230.
    Maraldi NM, Capanni C, Cenni V, Fini M, Lattanzi G. Laminopathies and Lamin-associated signaling pathways. J Cell Biochem 2011;112(4):979–992. doi:  https://doi.org/10.1002/jcb.22992. Epub 2011/03/15. PubMed PMID: 21400569.
  231. 231.
    Scaffidi P, Misteli T. Reversal of the cellular phenotype in the premature aging disease Hutchinson-Gilford progeria syndrome. Nat Med. 2005;11(4):440–5. doi: https://doi.org/10.1038/nm1204. Epub 2005/03/08. nm1204 [pii]. PubMed PMID: 15750600; PubMed Central PMCID: PMCPMC1351119.
  232. 232.
    McClintock D, Ratner D, Lokuge M, Owens DM, Gordon LB, Collins FS, et al. The mutant form of lamin A that causes Hutchinson-Gilford progeria is a biomarker of cellular aging in human skin. PLoS One. 2007;2(12):e1269. doi:  https://doi.org/10.1371/journal.pone.0001269. Epub 2007/12/07. PubMed PMID: 18060063; PubMed Central PMCID: PMCPMC2092390.
  233. 233.
    Scaffidi P, Misteli T. Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing. Nat Cell Biol. 2008;10(4):452–9. doi: https://doi.org/10.1038/ncb1708. Epub 2008/03/04. ncb1708 [pii]. PubMed PMID: 18311132; PubMed Central PMCID: PMCPMC2396576.
  234. 234.
    Wang Y, Panteleyev AA, Owens DM, Djabali K, Stewart CL, Worman HJ. Epidermal expression of the truncated prelamin A causing Hutchinson-Gilford progeria syndrome: effects on keratinocytes, hair and skin. Hum Mol Genet. 2008;17(15):2357–69. doi:  https://doi.org/10.1093/hmg/ddn136. Epub 2008/04/30. ddn136 [pii]. PubMed PMID: 18442998; PubMed Central PMCID: PMCPMC2733813.
  235. 235.
    Sagelius H, Rosengardten Y, Hanif M, Erdos MR, Rozell B, Collins FS, et al. Targeted transgenic expression of the mutation causing Hutchinson-Gilford progeria syndrome leads to proliferative and degenerative epidermal disease. J Cell Sci 2008;121(Pt 7):969–978. doi: https://doi.org/10.1242/jcs.022913. Epub 2008/03/13. jcs.022913 [pii]. PubMed PMID: 18334552.
  236. 236.
    Rapisarda V, Malashchuk I, Asamaowei IE, Poterlowicz K, Fessing MY, Sharov AA, et al. p63 transcription factor regulates nuclear shape and expression of nuclear envelope-associated genes in epidermal keratinocytes. J Invest Dermatol 2017. doi:  https://doi.org/10.1016/j.jid.2017.05.013. PubMed PMID: 28595999.
  237. 237.
    McKeown PC, Shaw PJ. Chromatin: linking structure and function in the nucleolus. Chromosoma 2009;118(1):11–23. doi:  https://doi.org/10.1007/s00412-008-0184-2. Epub 2008/10/18. PubMed PMID: 18925405.
  238. 238.
    Bartova E, Horakova AH, Uhlirova R, Raska I, Galiova G, Orlova D, et al. Structure and epigenetics of nucleoli in comparison with non-nucleolar compartments. J Histochem Cytochem. 2010;58(5):391–403. doi:  https://doi.org/10.1369/jhc.2009.955435. Epub 2009/12/23. jhc.2009.955435 [pii]. PubMed PMID: 20026667; PubMed Central PMCID: PMCPMC2857811.
  239. 239.
    Boulon S, Westman BJ, Hutten S, Boisvert FM, Lamond AI. The nucleolus under stress. Mol Cell. 2010;40(2):216–27. doi:  https://doi.org/10.1016/j.molcel.2010.09.024. Epub 2010/10/23. S1097-2765(10)00752-5 [pii]. PubMed PMID: 20965417; PubMed Central PMCID: PMCPMC2987465.
  240. 240.
    Hernandez-Verdun D. Nucleolus: from structure to dynamics. Histochem Cell Biol 2006;125(1–2):127–137. doi:  https://doi.org/10.1007/s00418-005-0046-4. Epub 2005/12/06. PubMed PMID: 16328431.
  241. 241.
    Boisvert FM, van Koningsbruggen S, Navascues J, Lamond AI. The multifunctional nucleolus. Nat Rev Mol Cell Biol 2007;8(7):574–585. doi: https://doi.org/10.1038/nrm2184. Epub 2007/05/24. nrm2184 [pii]. PubMed PMID: 17519961.
  242. 242.
    Cisterna B, Biggiogera M. Ribosome biogenesis: from structure to dynamics. Int Rev Cell Mol Biol 2010;284:67–111. doi: https://doi.org/10.1016/S1937-6448(10)84002-X. Epub 2010/09/30. doi: S1937-6448(10)84002-X [pii]. PubMed PMID: 20875629.
  243. 243.
    Karasek J, Smetana K, Hrdlicka A, Dubinin I, Hornak O, Ohelert W. Nuclear and nucleolar ultrastructure during the late stages of normal human keratinocyte maturation. Br J Dermatol 1972;86(6):601–607. Epub 1972/06/01. PubMed PMID: 5045951.Google Scholar
  244. 244.
    Tsuji T, Cox AJ. Ultrastructural studies of nuclei and nucleoli in psoriatic epidermis compared to those in normal epidermis. J Invest Dermatol. 1977;69:205–10.CrossRefPubMedGoogle Scholar
  245. 245.
    Nemeth A, Conesa A, Santoyo-Lopez J, Medina I, Montaner D, Peterfia B, et al. Initial genomics of the human nucleolus. PLoS Genet 2010;6(3):e1000889. doi: https://doi.org/10.1371/journal.pgen.1000889. Epub 2010/04/03. PubMed PMID: 20361057; PubMed Central PMCID: PMC2845662.
  246. 246.
    Sasaki M, Kawahara K, Nishio M, Mimori K, Kogo R, Hamada K, et al. Regulation of the MDM2-P53 pathway and tumor growth by PICT1 via nucleolar RPL11. Nat Med 2011;17(8):944–951. doi:  https://doi.org/10.1038/nm.2392. nm.2392 [pii]. Epub 2011/08/02. PubMed PMID: 21804542.
  247. 247.
    Edwards MJ, Thomas RC. Protein phosphatase type 1-dependent dephosphorylation of the retinoblastoma tumor suppressor protein in ultraviolet-irradiated human skin and keratinocytes. J Invest Dermatol 2000;115(1):88–94. doi: https://doi.org/10.1046/j.1523-1747.2000.00026.x. Epub 2000/07/08. jid026 [pii]. PubMed PMID: 10886513.
  248. 248.
    Kahlina K, Goren I, Pfeilschifter J, Frank S. p68 DEAD box RNA helicase expression in keratinocytes. Regulation, nucleolar localization, and functional connection to proliferation and vascular endothelial growth factor gene expression. J Biol Chem 2004;279(43):44872–44882. doi:  https://doi.org/10.1074/jbc.M402467200. Epub 2004/08/12. M402467200 [pii]. PubMed PMID: 15304501.
  249. 249.
    Nicholls PK, Doorbar J, Moore RA, Peh W, Anderson DM, Stanley MA. Detection of viral DNA and E4 protein in basal keratinocytes of experimental canine oral papillomavirus lesions. Virology 2001;284(1):82–98. doi: https://doi.org/10.1006/viro.2001.0868. S0042-6822(01)90868-2 [pii]. Epub 2001/05/16. PubMed PMID: 11352670.
  250. 250.
    Bohl J, Hull B, Vande Pol SB. Cooperative transformation and coexpression of bovine papillomavirus type 1 E5 and E7 proteins. J Virol. 2001;75(1):513–21. doi:  https://doi.org/10.1128/JVI.75.1.513-521.2001. Epub 2000/12/19. PubMed PMID: 11119620; PubMed Central PMCID: PMCPMC113944.
  251. 251.
    Pollock C, Huang S. The perinucleolar compartment. Cold Spring Harb Perspect Biol. 2010;2(2):a000679. doi:  https://doi.org/10.1101/cshperspect.a000679. PubMed PMID: 20182614; Epub 2010/02/26. PubMed Central PMCID: PMCPMC2828281.
  252. 252.
    Hall LL, Smith KP, Byron M, Lawrence JB. Molecular anatomy of a speckle. Anat Rec A Discov Mol Cell Evol Biol. 2006;288((7):664–75.CrossRefGoogle Scholar
  253. 253.
    Spector DL, Lamond AI. Nuclear speckles. Cold Spring Harb Perspect Biol. 2011;3(2). doi:  https://doi.org/10.1101/cshperspect.a000646. a000646 [pii]. Epub 2010/10/12. cshperspect.a000646 [pii]. PubMed PMID: 20926517.
  254. 254.
    Brown JM, Green J, das Neves RP, Wallace HA, Smith AJ, Hughes J, et al. Association between active genes occurs at nuclear speckles and is modulated by chromatin environment. J Cell Biol 2008;182(6):1083–1097. doi:  https://doi.org/10.1083/jcb.200803174. Epub 2008/09/24. jcb.200803174 [pii]. PubMed PMID: 18809724.; PubMed Central PMCID: PMC2542471.
  255. 255.
    Sharma A, Takata H, Shibahara K, Bubulya A, Bubulya PA. Son is essential for nuclear speckle organization and cell cycle progression. Mol Biol Cell. 2010;21(4):650–63. doi:  https://doi.org/10.1091/mbc.E09-02-0126. E09-02-0126 [pii]. Epub 2010/01/08. PubMed PMID: 20053686; PubMed Central PMCID: PMCPMC2820428.
  256. 256.
    Saitoh N, Spahr CS, Patterson SD, Bubulya P, Neuwald AF, Spector DL. Proteomic analysis of interchromatin granule clusters. Mol Biol Cell. 2004;15(8):3876–90. doi:  https://doi.org/10.1091/mbc.E04-03-0253. E04-03-0253 [pii]. Epub 2004/06/01. PubMed PMID: 15169873; PubMed Central PMCID: PMCPMC491843.
  257. 257.
    Nizami Z, Deryusheva S, Gall JG. The Cajal body and histone locus body. Cold Spring Harb Perspect Biol 2010;2(7):a000653. doi: https://doi.org/10.1101/cshperspect.a000653. Epub 2010/05/28. cshperspect.a000653 [pii]. PubMed PMID: 20504965.
  258. 258.
    Dundr M, Hebert MD, Karpova TS, Stanek D, Xu H, Shpargel KB, et al. In vivo kinetics of Cajal body components. J Cell Biol. 2004;164(6):831–42. doi:  https://doi.org/10.1083/jcb.200311121. jcb.200311121 [pii]. Epub 2004/03/17. PubMed PMID: 15024031; PubMed Central PMCID: PMCPMC1630494.
  259. 259.
    Strzelecka M, Oates AC, Neugebauer KM. Dynamic control of Cajal body number during zebrafish embryogenesis. Nucleus. 2010;1(1):96–108. doi:  https://doi.org/10.4161/nucl.1.1.10680. Epub 2011/02/18. PubMed PMID: 21327108; PubMed Central PMCID: PMCPMC3035118.
  260. 260.
    Tomlinson RL, Abreu EB, Ziegler T, Ly H, Counter CM, Terns RM, et al. Telomerase reverse transcriptase is required for the localization of telomerase RNA to cajal bodies and telomeres in human cancer cells. Mol Biol Cell. 2008;19(9):3793–800. doi:  https://doi.org/10.1091/mbc.E08-02-0184. E08-02-0184 [pii]. Epub 2008/06/20. PubMed PMID: 18562689; PubMed Central PMCID: PMCPMC2526684.
  261. 261.
    Zhu Y, Tomlinson RL, Lukowiak AA, Terns RM, Terns MP. Telomerase RNA accumulates in Cajal bodies in human cancer cells. Mol Biol Cell. 2004;15(1):81–90. Epub 2003/10/07. doi:  https://doi.org/10.1091/mbc.E03-07-0525. E03-07-0525 [pii]. PubMed PMID: 14528011; PubMed Central PMCID: PMCPMC307529.
  262. 262.
    Lallemand-Breitenbach V, de The H. PML nuclear bodies. Cold Spring Harb Perspect Biol. 2010;2(5):a000661. doi:  https://doi.org/10.1101/cshperspect.a000661. cshperspect.a000661 [pii]. Epub 2010/05/11. PubMed PMID: 20452955; PubMed Central PMCID: PMCPMC2857171.
  263. 263.
    Ishov AM, Sotnikov AG, Negorev D, Vladimirova OV, Neff N, Kamitani T, et al. PML is critical for ND10 formation and recruits the PML-interacting protein daxx to this nuclear structure when modified by SUMO-1. J Cell Biol. 1999;147(2):221–34. Epub 1999/10/20. PubMed PMID: 10525530; PubMed Central PMCID: PMCPMC2174231.Google Scholar
  264. 264.
    Bernardi R, Pandolfi PP. Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat Rev Mol Cell Biol 2007;8(12):1006–1016. doi: https://doi.org/10.1038/nrm2277. Epub 2007/10/12. nrm2277 [pii]. PubMed PMID: 17928811.
  265. 265.
    Lang M, Jegou T, Chung I, Richter K, Munch S, Udvarhelyi A, et al. Three-dimensional organization of promyelocytic leukemia nuclear bodies. J Cell Sci. 2010;123(Pt 3):392–400. doi:  https://doi.org/10.1242/jcs.053496. Epub 2010/02/05. 123/3/392 [pii]. PubMed PMID: 20130140.
  266. 266.
    Lindsay CR, Morozov VM, Ishov AM. PML NBs (ND10) and Daxx: from nuclear structure to protein function. Front Biosci 2008;13:7132–7142. Epub 2008/05/30. doi: 3216 [pii]. PubMed PMID: 18508722.Google Scholar
  267. 267.
    Dellaire G, Bazett-Jones DP. PML nuclear bodies: dynamic sensors of DNA damage and cellular stress. BioEssays 2004;26(9):963–977. Epub 2004/09/08. doi:  https://doi.org/10.1002/bies.20089. PubMed PMID: 15351967.
  268. 268.
    Hansen LA, Brown D, Virador V, Tanaka T, Andreola F, Strain K, et al. A PMLRARA transgene results in a retinoid-deficient phenotype associated with enhanced susceptibility to skin tumorigenesis. Cancer Res 2003;63(17):5257–5265. Epub 2003/09/23. PubMed PMID: 14500356.Google Scholar
  269. 269.
    Virador VM, Flores-Obando RE, Berry A, Patel R, Zakhari J, Lo YC, et al. The human promyelocytic leukemia protein is a tumor suppressor for murine skin carcinogenesis. Mol Carcinog. 2009;48(7):599–609. doi:  https://doi.org/10.1002/mc.20498. Epub 2008/12/06. PubMed PMID: 19058256; PubMed Central PMCID: PMCPMC2711034.
  270. 270.
    Cremer M, von Hase J, Volm T, Brero A, Kreth G, Walter J, et al. Non-random radial higher-order chromatin arrangements in nuclei of diploid human cells. Chromosom Res 2001;9(7):541–567. Epub 2001/11/28. PubMed PMID: 11721953.Google Scholar
  271. 271.
    Cremer T, Cremer M. Chromosome territories. In: Misteli T, Spector DL, editors. The nucleus. Cold-Spring Harbor: Cold Spring Harbor Laboratory Press; 2011. p. 93–114.Google Scholar
  272. 272.
    Cremer T, Cremer M, Hubner B, Strickfaden H, Smeets D, Popken J, et al. The 4D nucleome: evidence for a dynamic nuclear landscape based on co-aligned active and inactive nuclear compartments. FEBS Lett 2015. doi: https://doi.org/10.1016/j.febslet.2015.05.037. S0014-5793(15)00431-7 [pii]. Epub 2015/06/02. PubMed PMID: 26028501.
  273. 273.
    Hemberger M, Dean W, Reik W. Epigenetic dynamics of stem cells and cell lineage commitment: digging Waddington’s canal. Nat Rev Mol Cell Biol 2009;10(8):526–537. Epub 2009 Jul 15.Google Scholar
  274. 274.
    Sequeira-Mendes J, Gutierrez C. Genome architecture: from linear organisation of chromatin to the 3D assembly in the nucleus. Chromosoma 2015. doi:  https://doi.org/10.1007/s00412-015-0538-5. Epub 2015/09/04. PubMed PMID: 26330112.
  275. 275.
    Fukui K. Structural analyses of chromosomes and their constituent proteins. Cytogenet Genome Res 2009;124(3–4):215–227. doi: https://doi.org/10.1159/000218127. 000218127 [pii]. Epub 2009/06/27. PubMed PMID: 19556775.
  276. 276.
    Cremer T, Cremer C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2001;2(4):292–301. doi:  https://doi.org/10.1038/35066075. 35066075 [pii]. Epub 2001/04/03. PubMed PMID: 11283701.
  277. 277.
    Solovei I, Cremer M. 3D-FISH on cultured cells combined with immunostaining. Methods Mol Biol 2010;659:117–126. doi:  https://doi.org/10.1007/978-1-60761-789-1_8. Epub 2010/09/03. PubMed PMID: 20809307.
  278. 278.
    Cremer T, Cremer C. Rise, fall and resurrection of chromosome territories: a historical perspective. Part II. Fall and resurrection of chromosome territories during the 1950s to 1980s. Part III. Chromosome territories and the functional nuclear architecture: experiments and models from the 1990s to the present. Eur J Histochem 2006;50(4):223–272. Epub 2007/01/11. PubMed PMID: 17213034.Google Scholar
  279. 279.
    Cremer T, Cremer C. Rise, fall and resurrection of chromosome territories: a historical perspective. Part I. The rise of chromosome territories. Eur J Histochem 2006;50(3):161–176. Epub 2006/08/22. PubMed PMID: 16920639.Google Scholar
  280. 280.
    Cremer T, Cremer M. Chromosome territories. Cold Spring Harb Perspect Biol 2010;2(3):a003889. doi:  https://doi.org/10.1101/cshperspect.a003889. Epub 2010/03/20. PubMed PMID: 20300217; PubMed Central PMCID: PMC2829961.
  281. 281.
    Joffe B, Leonhardt H, Solovei I. Differentiation and large scale spatial organization of the genome. Curr Opin Genet Dev 2010;20(5):562–569. doi: https://doi.org/10.1016/j.gde.2010.05.009. S0959-437X(10)00098-5 [pii]. Epub 2010/06/22. PubMed PMID: 20561778.
  282. 282.
    Kind J, van Steensel B. Stochastic genome-nuclear lamina interactions: modulating roles of Lamin A and BAF. Nucleus. 2014;5(2):124–30. doi:  https://doi.org/10.4161/nucl.28825. 28825 [pii]. Epub 2014/04/11. PubMed PMID: 24717229; PubMed Central PMCID: PMCPMC4049918.
  283. 283.
    Roix JJ, McQueen PG, Munson PJ, Parada LA, Misteli T. Spatial proximity of translocation-prone gene loci in human lymphomas. Nat Genet 2003;34(3):287–291. doi: https://doi.org/10.1038/ng1177. ng1177 [pii]. Epub 2003/06/17. PubMed PMID: 12808455.
  284. 284.
    Parada LA, Sotiriou S, Misteli T. Spatial genome organization. Exp Cell Res 2004;296(1):64–70. doi:  https://doi.org/10.1016/j.yexcr.2004.03.013. S0014482704001296 [pii]. Epub 2004/05/04. PubMed PMID: 15120995.
  285. 285.
    Brianna Caddle L, Grant JL, Szatkiewicz J, van Hase J, Shirley BJ, Bewersdorf J, et al. Chromosome neighborhood composition determines translocation outcomes after exposure to high-dose radiation in primary cells. Chromosom Res 2007;15(8):1061–1073. doi:  https://doi.org/10.1007/s10577-007-1181-7. Epub 2007/12/07. PubMed PMID: 18060570.
  286. 286.
    Khalil A, Grant JL, Caddle LB, Atzema E, Mills KD, Arneodo A. Chromosome territories have a highly nonspherical morphology and nonrandom positioning. Chromosom Res 2007;15(7):899–916. Epub 2007/10/11. doi:  https://doi.org/10.1007/s10577-007-1172-8. PubMed PMID: 17926137.
  287. 287.
    Schermelleh L, Heintzmann R, Leonhardt H. A guide to super-resolution fluorescence microscopy. J Cell Biol. 2010;190(2):165–75. doi:  https://doi.org/10.1083/jcb.201002018. jcb.201002018 [pii]. Epub 2010/07/21. PubMed PMID: 20643879; PubMed Central PMCID: PMCPMC2918923.
  288. 288.
    Markaki Y, Gunkel M, Schermelleh L, Beichmanis S, Neumann J, Heidemann M, et al. Functional Nuclear Organization of Transcription and DNA Replication: A Topographical Marriage between Chromatin Domains and the Interchromatin Compartment. Cold Spring Harb Symp Quant Biol. 2011. doi:  https://doi.org/10.1101/sqb.2010.75.042. sqb.2010.75.042 [pii]. Epub 2011/04/07. PubMed PMID: 21467142.
  289. 289.
    Jost KL, Haase S, Smeets D, Schrode N, Schmiedel JM, Bertulat B, et al. 3D-Image analysis platform monitoring relocation of pluripotency genes during reprogramming. Nucleic Acids Res. 2011;39(17):e113. doi:  https://doi.org/10.1093/nar/gkr486. gkr486 [pii]. Epub 2011/06/28. PubMed PMID: 21700670; PubMed Central PMCID: PMCPMC3177216.
  290. 290.
    Williams RR, Broad S, Sheer D, Ragoussis J. Subchromosomal positioning of the epidermal differentiation complex (EDC) in keratinocyte and lymphoblast interphase nuclei. Exp Cell Res 2002;272(2):163–175. doi:  https://doi.org/10.1006/excr.2001.5400. S001448270195400X [pii]. Epub 2002/01/05. PubMed PMID: 11777341.
  291. 291.
    Roukos V, Misteli T. The biogenesis of chromosome translocations. Nat Cell Biol 2014;16(4):293–300. doi:  https://doi.org/10.1038/ncb2941. ncb2941 [pii]. Epub 2014/04/03. PubMed PMID: 24691255.
  292. 292.
    Gomez-Ospina N, Chang AL, Qu K, Oro AE. Translocation affecting sonic hedgehog genes in basal-cell carcinoma. N Engl J Med 2012;366(23):2233–2234. doi:  https://doi.org/10.1056/NEJMc1115123. PubMed PMID: 22670922; PubMed Central PMCID: PMCPMC3839666.
  293. 293.
    Dekker J, Rippe K, Dekker M, Kleckner N. Capturing chromosome conformation. Science 2002;295(5558):1306–1311. doi:  https://doi.org/10.1126/science.1067799.295/5558/1306. [pii]. Epub 2002/02/16. PubMed PMID: 11847345.
  294. 294.
    Dekker J, Marti-Renom MA, Mirny LA. Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat Rev Genet 2013;14(6):390–403. Epub 2013/05/10. doi:  https://doi.org/10.1038/nrg3454. nrg3454 [pii]. PubMed PMID: 23657480.
  295. 295.
    Lajoie BR, Dekker J, Kaplan N. The Hitchhiker’s guide to Hi-C analysis: practical guidelines. Methods. 2015;72:65–75. doi:  https://doi.org/10.1016/j.ymeth.2014.10.031. S1046-2023(14)00358-2 [pii]. Epub 2014/12/03. PubMed PMID: 25448293; PubMed Central PMCID: PMCPMC4347522.
  296. 296.
    de Laat W, Dekker J. 3C-based technologies to study the shape of the genome. Methods. 2012;58(3):189–91. doi:  https://doi.org/10.1016/j.ymeth.2012.11.005. S1046-2023(12)00291-5 [pii]. Epub 2012/12/04. PubMed PMID: 23199640; PubMed Central PMCID: PMCPMC3874834.
  297. 297.
    Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009;326(5950):289–93.CrossRefPubMedPubMedCentralGoogle Scholar
  298. 298.
    Popken J, Brero A, Koehler D, Schmid VJ, Strauss A, Wuensch A, et al. Reprogramming of fibroblast nuclei in cloned bovine embryos involves major structural remodeling with both striking similarities and differences to nuclear phenotypes of in vitro fertilized embryos. Nucleus 2014;5(6):555–589. doi:  https://doi.org/10.4161/19491034.2014.979712. Epub 2014/12/09. PubMed PMID: 25482066.
  299. 299.
    Dekker J, Heard E. Structural and functional diversity of Topologically Associating Domains. FEBS Lett. 2015. doi: https://doi.org/10.1016/j.febslet.2015.08.044. S0014-5793(15)00814-5 [pii]. Epub 2015/09/09. PubMed PMID: 26348399.
  300. 300.
    Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I, Servant N, et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 2012;485(7398):381–385. doi:  https://doi.org/10.1038/nature11049. nature11049 [pii]. Epub 2012/04/13. PubMed PMID: 22495304.
  301. 301.
    Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature. 2012;485(7398):376–80. doi:  https://doi.org/10.1038/nature11082. nature11082 [pii]. Epub 2012/04/13. PubMed PMID: 22495300; PubMed Central PMCID: PMCPMC3356448.
  302. 302.
    Naumova N, Imakaev M, Fudenberg G, Zhan Y, Lajoie BR, Mirny LA, et al. Organization of the mitotic chromosome. Science 2013;342(6161):948–953. doi:  https://doi.org/10.1126/science.1236083. science.1236083 [pii]. Epub 2013/11/10. PubMed PMID: 24200812.
  303. 303.
    Gomez-Diaz E, Corces VG. Architectural proteins: regulators of 3D genome organization in cell fate. Trends Cell Biol. 2014;24(11):703–11. doi:  https://doi.org/10.1016/j.tcb.2014.08.003. S0962-8924(14)00135-4 [pii]. Epub 2014/09/15. PubMed PMID: 25218583; PubMed Central PMCID: PMCPMC4254322.
  304. 304.
    Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 2014;159(7):1665–1680. doi: https://doi.org/10.1016/j.cell.2014.11.021. S0092-8674(14)01497-4 [pii]. Epub 2014/12/17. PubMed PMID: 25497547.
  305. 305.
    Cai S, Han HJ, Kohwi-Shigematsu T. Tissue-specific nuclear architecture and gene expression regulated by SATB1. Nat Genet. 2003;34(1):42–51.CrossRefPubMedGoogle Scholar
  306. 306.
    Cai S, Lee CC, Kohwi-Shigematsu T. SATB1 packages densely looped, transcriptionally active chromatin for coordinated expression of cytokine genes. Nat Genet. 2006;38(11):1278–88. Epub 2006 Oct 22CrossRefPubMedGoogle Scholar
  307. 307.
    Kohwi-Shigematsu T, Kohwi Y, Takahashi K, Richards HW, Ayers SD, Han HJ, et al. SATB1-mediated functional packaging of chromatin into loops. Methods. 2012;58(3):243–54. doi:  https://doi.org/10.1016/j.ymeth.2012.06.019. S1046-2023(12)00154-5 [pii]. Epub 2012/07/12. PubMed PMID: 22782115; PubMed Central PMCID: PMCPMC4029128.
  308. 308.
    Kohwi-Shigematsu T, Poterlowicz K, Ordinario E, Han HJ, Botchkarev VA, Kohwi Y. Genome organizing function of SATB1 in tumor progression. Semin Cancer Biol. 2013;23(2):72–9. doi:  https://doi.org/10.1016/j.semcancer.2012.06.009. S1044-579X(12)00101-0 [pii]. Epub 2012/07/10. PubMed PMID: 22771615; PubMed Central PMCID: PMCPMC4048061.
  309. 309.
    Poterlowicz K, Yarker JL, Malashchuk I, Lajoie BR, Mardaryev AN, Gdula MR, Sharov AA, Kohwi-Shigematsu T, Botchkarev VA, Fessing MY. 5C analysis of the Epidermal Differentiation Complex locus reveals distinct chromatin interaction networks between gene-rich and gene-poor TADs in skin epithelial cells. PLoS Genet. 2017;13(9):e1006966Google Scholar
  310. 310.
    Dowen JM, Fan ZP, Hnisz D, Ren G, Abraham BJ, Zhang LN, et al. Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes. Cell. 2014;159(2):374–87. doi:  https://doi.org/10.1016/j.cell.2014.09.030. S0092-8674(14)01179-9 [pii]. Epub 2014/10/11. PubMed PMID: 25303531; PubMed Central PMCID: PMCPMC4197132.
  311. 311.
    de Laat W, Duboule D. Topology of mammalian developmental enhancers and their regulatory landscapes. Nature 2013;502(7472):499–506. doi:  https://doi.org/10.1038/nature12753. nature12753 [pii]. Epub 2013/10/25. PubMed PMID: 24153303.
  312. 312.
    Oh IY, Albea DM, Goodwin ZA, Quiggle AM, Baker BP, Guggisberg AM, et al. Regulation of the dynamic chromatin architecture of the epidermal differentiation complex is mediated by a c-Jun/AP-1-modulated enhancer. J Invest Dermatol 2014. doi:  https://doi.org/10.1038/jid.2014.44. jid201444 [pii]. Epub 2014/01/29. PubMed PMID: 24468747.
  313. 313.
    Adoue V, Chavanas S, Coudane F, Mechin MC, Caubet C, Ying S, et al. Long-range enhancer differentially regulated by c-Jun and JunD controls peptidylarginine deiminase-3 gene in keratinocytes. J Mol Biol 2008;384(5):1048–1057. doi:  https://doi.org/10.1016/j.jmb.2008.10.019. S0022-2836(08)01287-4 [pii]. Epub 2008/10/28. PubMed PMID: 18952102.
  314. 314.
    Gierman HJ, Indemans MH, Koster J, Goetze S, Seppen J, Geerts D, et al. Domain-wide regulation of gene expression in the human genome. Genome Res. 2007;17(9):1286–95. doi:  https://doi.org/10.1101/gr.6276007. gr.6276007 [pii]. Epub 2007/08/19. PubMed PMID: 17693573; PubMed Central PMCID: PMCPMC1950897.
  315. 315.
    Truong AB, Khavari PA. Control of keratinocyte proliferation and differentiation by p63. Cell Cycle 2007;6(3):295–299. Epub 2007/02/01. doi: 3753 [pii]. PubMed PMID: 17264679.Google Scholar
  316. 316.
    Klein RH, Andersen B. Dynamic networking for epidermal differentiation. Dev Cell 2015;32(6):661–662. doi:  https://doi.org/10.1016/j.devcel.2015.03.006. PubMed PMID: 25805131.
  317. 317.
    Fuchs E. Epithelial skin biology: three decades of developmental biology, a hundred questions answered and a thousand new ones to address. Curr Top Dev Biol 2016;116:357–374. doi:  https://doi.org/10.1016/bs.ctdb.2015.11.033. PubMed PMID: 26970628; PubMed Central PMCID: PMCPMC5026047.
  318. 318.
    Botchkarev VA. Integration of the transcription factor-regulated and epigenetic mechanisms in the control of keratinocyte differentiation. J Investig Dermatol Symp Proc 2015;17(2):30–32. doi:  https://doi.org/10.1038/jidsymp.2015.37. PubMed PMID: 26551942; PubMed Central PMCID: PMCPMC5080658.
  319. 319.
    Botchkarev VA, Mardaryev AN. Repressing the keratinocyte genome: how the Polycomb complex subunits operate in concert to control skin and hair follicle development. J Invest Dermatol 2016;136(8):1538–1540. doi:  https://doi.org/10.1016/j.jid.2016.04.026. PubMed PMID: 27450498.
  320. 320.
    Sethi I, Gluck C, Zhou H, Buck MJ, Sinha S. Evolutionary re-wiring of p63 and the epigenomic regulatory landscape in keratinocytes and its potential implications on species-specific gene expression and phenotypes. Nucleic Acids Res 2017. doi:  https://doi.org/10.1093/nar/gkx416. PubMed PMID: 28505376.
  321. 321.
    Waikel RL, Kawachi Y, Waikel PA, Wang XJ, Roop DR. Deregulated expression of c-Myc depletes epidermal stem cells. Nat Genet 2001;28(2):165–168. doi:  https://doi.org/10.1038/88889. 88889 [pii]. Epub 2001/05/31. PubMed PMID: 11381265.
  322. 322.
    Lo Celso C, Berta MA, Braun KM, Frye M, Lyle S, Zouboulis CC, et al. Characterization of bipotential epidermal progenitors derived from human sebaceous gland: contrasting roles of c-Myc and beta-catenin. Stem Cells 2008;26(5):1241–1252. doi:  https://doi.org/10.1634/stemcells.2007-0651. 2007-0651 [pii]. Epub 2008/03/01. PubMed PMID: 18308950.
  323. 323.
    Nascimento EM, Cox CL, MacArthur S, Hussain S, Trotter M, Blanco S, et al. The opposing transcriptional functions of Sin3a and c-Myc are required to maintain tissue homeostasis. Nat Cell Biol. 2011;13(12):1395–405. doi:  https://doi.org/10.1038/ncb2385. ncb2385 [pii]. Epub 2011/11/22. PubMed PMID: 22101514; PubMed Central PMCID: PMCPMC3242072.
  324. 324.
    Habib T, Park H, Tsang M, de Alboran IM, Nicks A, Wilson L, et al. Myc stimulates B lymphocyte differentiation and amplifies calcium signaling. J Cell Biol. 2007;179(4):717–31. doi:  https://doi.org/10.1083/jcb.200704173. Epub 2007/11/14. PubMed PMID: 17998397; PubMed Central PMCID: PMCPMC2080907.
  325. 325.
    Knoepfler PS, Zhang XY, Cheng PF, Gafken PR, McMahon SB, Eisenman RN. Myc influences global chromatin structure. EMBO J. 2006;25(12):2723–34. doi:  https://doi.org/10.1038/sj.emboj.7601152. 7601152 [pii]. Epub 2006/05/26. PubMed PMID: 16724113; PubMed Central PMCID: PMCPMC1500848.
  326. 326.
    Wurster AL, Pazin MJ. BRG1-mediated chromatin remodeling regulates differentiation and gene expression of T helper cells. Mol Cell Biol. 2008;28(24):7274–85. doi:  https://doi.org/10.1128/MCB.00835-08. MCB.00835-08 [pii]. Epub 2008/10/15. PubMed PMID: 18852284; PubMed Central PMCID: PMCPMC2593447.
  327. 327.
    Pham LV, Tamayo AT, Li C, Bueso-Ramos C, Ford RJ. An epigenetic chromatin remodeling role for NFATc1 in transcriptional regulation of growth and survival genes in diffuse large B-cell lymphomas. Blood. 2010;116(19):3899–906. doi:  https://doi.org/10.1182/blood-2009-12-257378. Epub 2010/07/29. PubMed PMID: 20664054; PubMed Central PMCID: PMCPMC2981542.
  328. 328.
    Swinstead EE, Paakinaho V, Presman DM, Hager GL. Pioneer factors and ATP-dependent chromatin remodeling factors interact dynamically: a new perspective: multiple transcription factors can effect chromatin pioneer functions through dynamic interactions with ATP-dependent chromatin remodeling factors. BioEssays 2016;38(11):1150–1157. doi:  https://doi.org/10.1002/bies.201600137. PubMed PMID: 27633730.
  329. 329.
    Xu M, Luo W, Elzi DJ, Grandori C, Galloway DA. NFX1 interacts with mSin3A/histone deacetylase to repress hTERT transcription in keratinocytes. Mol Cell Biol. 2008;28(15):4819–28. doi:  https://doi.org/10.1128/MCB.01969-07. MCB.01969-07 [pii]. Epub 2008/05/29. PubMed PMID: 18505829; PubMed Central PMCID: PMCPMC2493374.
  330. 330.
    Bansal N, Kadamb R, Mittal S, Vig L, Sharma R, Dwarakanath BS, et al. Tumor suppressor protein p53 recruits human Sin3B/HDAC1 complex for down-regulation of its target promoters in response to genotoxic stress. PLoS One. 2011;6(10):e26156. doi:  https://doi.org/10.1371/journal.pone.0026156. PONE-D-11-10406 [pii]. Epub 2011/10/27. PubMed PMID: 22028823; PubMed Central PMCID: PMCPMC3197607.
  331. 331.
    Ahmed MI, Mardaryev AN, Lewis CJ, Sharov AA, Botchkareva NV. MicroRNA-21 is an important downstream component of BMP signalling in epidermal keratinocytes. J Cell Sci. 2011;124(Pt 20):3399–404. doi:  https://doi.org/10.1242/jcs.086710. PubMed PMID: 21984808; PubMed Central PMCID: PMCPMC3196856.
  332. 332.
    Lin L, Gan H, Zhang H, Tang W, Sun Y, Tang X, et al. MicroRNA21 inhibits SMAD7 expression through a target sequence in the 3′ untranslated region and inhibits proliferation of renal tubular epithelial cells. Mol Med Rep 2014;10(2):707–712. doi:  https://doi.org/10.3892/mmr.2014.2312. PubMed PMID: 24913635.
  333. 333.
    Driskell I, Oda H, Blanco S, Nascimento E, Humphreys P, Frye M. The histone methyltransferase Setd8 acts in concert with c-Myc and is required to maintain skin. EMBO J 2011. doi:  https://doi.org/10.1038/emboj.2011.421. emboj2011421 [pii]. Epub 2011/11/26. PubMed PMID: 22117221.
  334. 334.
    Frye M, Watt FM. The RNA methyltransferase Misu (NSun2) mediates Myc-induced proliferation and is upregulated in tumors. Curr Biol 2006;16(10):971–981. doi:  https://doi.org/10.1016/j.cub.2006.04.027. S0960-9822(06)01488-6 [pii]. Epub 2006/05/23. PubMed PMID: 16713953.
  335. 335.
    Kouwenhoven EN, Oti M, Niehues H, van Heeringen SJ, Schalkwijk J, Stunnenberg HG, et al. Transcription factor p63 bookmarks and regulates dynamic enhancers during epidermal differentiation. EMBO Rep. 2015;16(7):863–78. doi:  https://doi.org/10.15252/embr.201439941. embr.201439941 [pii]. Epub 2015/06/03. PubMed PMID: 26034101; PubMed Central PMCID: PMCPMC4515125.
  336. 336.
    Kouwenhoven EN, van Bokhoven H, Zhou H. Gene regulatory mechanisms orchestrated by p63 in epithelial development and related disorders. Biochim Biophys Acta 2015;1849(6):590–600. doi:  https://doi.org/10.1016/j.bbagrm.2015.03.003. S1874-9399(15)00068-1 [pii]. Epub 2015/03/24. PubMed PMID: 25797018.
  337. 337.
    Adam RC, Yang H, Rockowitz S, Larsen SB, Nikolova M, Oristian DS, et al. Pioneer factors govern super-enhancer dynamics in stem cell plasticity and lineage choice. Nature. 2015. doi:  https://doi.org/10.1038/nature14289. nature14289 [pii]. Epub 2015/03/25. PubMed PMID: 25799994.
  338. 338.
    Botchkarev VA, Botchkareva NV, Nakamura M, Huber O, Funa K, Lauster R, et al. Noggin is required for induction of hair follicle growth phase in postnatal skin. FASEB J. 2001;15:2205–14.CrossRefPubMedGoogle Scholar
  339. 339.
    Kandyba E, Leung Y, Chen YB, Widelitz R, Chuong CM, Kobielak K. Competitive balance of intrabulge BMP/Wnt signaling reveals a robust gene network ruling stem cell homeostasis and cyclic activation. Proc Natl Acad Sci U S A 2013;110(4):1351–1356. doi:  https://doi.org/10.1073/pnas.1121312110. PubMed PMID: 23292934; PubMed Central PMCID: PMCPMC3557042.
  340. 340.
    Kobielak K, Pasolli HA, Alonso L, Polak L, Fuchs E. Defining BMP functions in the hair follicle by conditional ablation of BMP receptor IA. J Cell Biol 2003;163(3):609–623. doi:  https://doi.org/10.1083/jcb.200309042. PubMed PMID: 14610062; PubMed Central PMCID: PMCPMC2173651.
  341. 341.
    Andl T, Ahn K, Kairo A, Chu EY, Wine-Lee L, Reddy ST, et al. Epithelial Bmpr1a regulates differentiation and proliferation in postnatal hair follicles and is essential for tooth development. Development. 2004;131:2257–68.CrossRefPubMedGoogle Scholar
  342. 342.
    Clevers H, Nusse R. Wnt/beta-catenin signaling and disease. Cell 2012;149(6):1192–1205. doi:  https://doi.org/10.1016/j.cell.2012.05.012. PubMed PMID: 22682243.
  343. 343.
    Lien WH, Polak L, Lin M, Lay K, Zheng D, Fuchs E. In vivo transcriptional governance of hair follicle stem cells by canonical Wnt regulators. Nat Cell Biol. 2014;16(2):179–90. doi:  https://doi.org/10.1038/ncb2903. PubMed PMID: 24463605; PubMed Central PMCID: PMCPMC3984009.
  344. 344.
    Genander M, Cook PJ, Ramskold D, Keyes BE, Mertz AF, Sandberg R, et al. BMP signaling and its pSMAD1/5 target genes differentially regulate hair follicle stem cell lineages. Cell Stem Cell 2014;15(5):619–633. doi:  https://doi.org/10.1016/j.stem.2014.09.009. PubMed PMID: 25312496; PubMed Central PMCID: PMCPMC4276600.
  345. 345.
    Rinaldi L, Datta D, Serrat J, Morey L, Solanas G, Avgustinova A, et al. Dnmt3a and Dnmt3b Associate with Enhancers to Regulate Human Epidermal Stem Cell Homeostasis. Cell Stem Cell 2016;19(4):491–501. doi:  https://doi.org/10.1016/j.stem.2016.06.020. PubMed PMID: 27476967.
  346. 346.
    Hill CS. Transcriptional control by the SMADs. Cold Spring Harb Perspect Biol 2016;8(10). doi:  https://doi.org/10.1101/cshperspect.a022079. PubMed PMID: 27449814.
  347. 347.
    Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al. Systematic localization of common disease-associated variation in regulatory DNA. Science. 2012;337(6099):1190–5. doi:  https://doi.org/10.1126/science.1222794. science.1222794 [pii]. Epub 2012/09/08. PubMed PMID: 22955828; PubMed Central PMCID: PMCPMC3771521.
  348. 348.
    Gondor A. Nuclear architecture and chromatin structure on the path to cancer. Semin Cancer Biol 2013;23(2):63–64. doi:  https://doi.org/10.1016/j.semcancer.2013.02.006. S1044-579X(13)00018-7 [pii]. Epub 2013/03/05. PubMed PMID: 23454238.
  349. 349.
    Tough DF, Lewis HD, Rioja I, Lindon MJ, Prinjha RK. Epigenetic pathway targets for the treatment of disease: accelerating progress in the development of pharmacological tools: IUPHAR Review 11. Br J Pharmacol. 2014;171(22):4981–5010. doi:  https://doi.org/10.1111/bph.12848. Epub 2014/07/26. PubMed PMID: 25060293; PubMed Central PMCID: PMCPMC4253452.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Vladimir A. Botchkarev
    • 1
    • 2
    Email author
  • Andrey A. Sharov
    • 2
  • Michael Y. Fessing
    • 1
  1. 1.Centre for Skin SciencesUniversity of BradfordBradfordUK
  2. 2.Department of DermatologyBoston University School of MedicineBostonUSA

Personalised recommendations