Skip to main content

Abstract

PCOS is a multifactorial polygenic disease (interaction between several genetic and environmental factors), with a heritability of ∼70 %. Even if several studies conducted in families of women with PCOS have demonstrated the genetic basis of the syndrome, nowadays a genetic pattern certainly involved in PCOS predisposition has not been identified. Most studies have included different kinds of genes: those related to androgen biosynthesis and action and their regulation, genes involved in insulin resistance and associated disorders, and also genes involved in chronic inflammation and atherosclerosis.

The etiology of this syndrome is still partly unknown, but it is likely to be multifactorial: in this chapter, PCOS etiopathogenesis theories are widely explained, and the essential role of insulin resistance is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barber TM, Franks S (2013) Genetics of polycystic ovary syndrome. Front Horm Res 40:28–39

    Article  CAS  PubMed  Google Scholar 

  2. Cooper HE, Spellacy WN, Prem KA, Cohen WD (1968) Hereditary factors in the Stein-Leventhal syndrome. Am J Obstet Gynecol 100:371–387

    Article  CAS  PubMed  Google Scholar 

  3. Kahsar-Miller MD, Nixon C, Boots LR et al (2001) Prevalence of polycystic ovary syndrome (PCOS) in first-degree relatives of patients with PCOS. Fertil Steril 75:53–58

    Article  CAS  PubMed  Google Scholar 

  4. Yildiz BO, Yarali H, Oguz H, Bayraktar M (2003) Glucose intolerance, insulin resistance, and hyperandrogenemia in first degree relatives of women with polycystic ovary syndrome. J Clin Endocrinol Metab 88:2031–2036

    Article  CAS  PubMed  Google Scholar 

  5. Ibanez L, Valls C, Potau N et al (2001) Polycystic ovary syndrome after precocious pubarche: ontogeny of the low-birthweight effect. Clin Endocrinol (Oxf) 55:667–672

    Article  CAS  Google Scholar 

  6. Escobar-Morreale HF, Luque-Ramirez M, San Millan JL (2005) The molecular-genetic basis of functional hyperandrogenism and the polycystic ovary syndrome. Endocr Rev 26(2):251–282

    Article  CAS  PubMed  Google Scholar 

  7. Rosenfield RL, Barnes RB, Cara JF, Lucky AW (1990) Dysregulation of cytochrome P450c 17α as the cause of polycystic ovarian syndrome. Fertil Steril 53:785–791

    CAS  PubMed  Google Scholar 

  8. Franks S, Williamson R (1994) Polycystic ovaries and premature male pattern baldness are associated with one allele of the steroid metabolism gene CYP17. Hum Mol Genet 3:1873–1876

    Article  PubMed  Google Scholar 

  9. Franks S (1997) The 17-hydroxylase/17,20 lyase gene (CYP17) and polycystic ovary syndrome. Clin Endocrinol (Oxf) 46:135–136

    Article  CAS  Google Scholar 

  10. Franks S, White D, Gilling-Smith C et al (1996) Hypersecretion of androgens by polycystic ovaries: the role of genetic factors in the regulation of cytochrome P450c17 alpha. Baillieres Clin Endocrinol Metab 10:193–203

    Article  CAS  PubMed  Google Scholar 

  11. Diamanti-Kandarakis E, Bartzis MI, Zapanti ED et al (1999) Polymorphism T–C SNP (at 34 bp) of gene CYP17 promoter in Greek patients with polycystic ovary syndrome. Fertil Steril 71:431–435

    Article  CAS  PubMed  Google Scholar 

  12. Gharani N, Waterworth DM, Williamson R, Franks S (1996) 5alpha polymorphism of the CYP17 gene is not associated with serum testosterone levels in women with polycystic ovaries. J Clin Endocrinol Metab 81:4174

    CAS  PubMed  Google Scholar 

  13. Marszalek B, Lacinski M, Babych N et al (2001) Investigations on the genetic polymorphism in the region of CYP17 gene encoding 5alpha-UTR in patients with polycystic ovarian syndrome. Gynecol Endocrinol 15:123–128

    CAS  PubMed  Google Scholar 

  14. Techatraisak K, Conway GS, Rumsby G (1997) Frequency of a polymorphism in the regulatory region of the 17alpha-hydroxylase-17,20-lyase (CYP17) gene in hyperandrogenic states. Clin Endocrinol (Oxf) 46:131–134

    Article  CAS  Google Scholar 

  15. Urbanek M, Legro RS, Driscoll DA et al (1999) Thirty-seven candidate genes for polycystic ovary syndrome: strongest evidence for linkage is with follistatin. Proc Natl Acad Sci U S A 96:8573–8578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gharani N, Waterworth DM, Batty S et al (1997) Association of the steroid synthesis gene CYP11a with polycystic ovary syndrome and hyperandrogenism. Hum Mol Genet 6:397–402

    Article  CAS  PubMed  Google Scholar 

  17. Diamanti-Kandarakis E, Bartzis MI, Bergiele AT et al (2000) Microsatellite polymorphism (tttta) at -528 base pairs of gene CYP11a influences hyperandrogenemia in patients with polycystic ovary syndrome. Fertil Steril 73:735–741

    Article  CAS  PubMed  Google Scholar 

  18. San Millan JL, Sancho J, Calvo RM, Escobar-Morreale HF (2001) Role of the pentanucleotide (tttta)(n) polymorphism in the promoter of the CYP11a gene in the pathogenesis of hirsutism. Fertil Steril 75:797–802

    Article  CAS  PubMed  Google Scholar 

  19. Gaasenbeek M, Powell BL, Sovio U et al (2004) Large-scale analysis of the relationship between CYP11A promoter variation, polycystic ovarian syndrome, and serum testosterone. J Clin Endocrinol Metab 89:2408–2413

    Article  CAS  PubMed  Google Scholar 

  20. Takayama K, Fukaya T, Sasano H et al (1996) Immunohistochemical study of steroidogenesis and cell proliferation in polycystic ovarian syndrome. Hum Reprod 11:1387–1392

    Article  CAS  PubMed  Google Scholar 

  21. Jakimiuk AJ, Weitsman SR, Brzechffa PR, Magoffin DA (1998) Aromatase mRNA expression in individual follicles from polycystic ovaries. Mol Hum Reprod 4:1–8

    Article  CAS  PubMed  Google Scholar 

  22. Furui K, Suganuma N, Tsukahara S et al (1994) Identification of two point mutations in the gene coding luteinizing hormone (LH) β-subunit, associated with immunologically anomalous LH variants. J Clin Endocrinol Metab 78:107–113

    CAS  PubMed  Google Scholar 

  23. Wang P et al (2014) Hypomethylation of the LH/choriogonadotropin receptor promoter region is a potential mechanism underlying susceptibility to polycystic ovary syndrome. Endocrinology 155(4):1445–1452

    Article  PubMed  CAS  Google Scholar 

  24. Pugeat M, Crave JC, Tourniaire J, Forest MG (1996) Clinical utility of sex hormone-binding globulin measurement. Horm Res 45:148–155

    Article  CAS  PubMed  Google Scholar 

  25. Xita N, Tsatsoulis A, Chatzikyriakidou A, Georgiou I (2003) Association of the (TAAAA)n repeat polymorphism in the sex hormone-binding globulin (SHBG) gene with polycystic ovary syndrome and relation to SHBG serum levels. J Clin Endocrinol Metab 88:5976–5980

    Article  CAS  PubMed  Google Scholar 

  26. Talbot JA, Bicknell EJ, Rajkhowa M et al (1996) Molecular scanning of the insulin receptor gene in women with polycystic ovarian syndrome. J Clin Endocrinol Metab 81:1979–1983

    CAS  PubMed  Google Scholar 

  27. Conway GS, Avey C, Rumsby G (1994) The tyrosine kinase domain of the insulin receptor gene is normal in women with hyperinsulinaemia and polycystic ovary syndrome. Hum Reprod 9:1681–1683

    CAS  PubMed  Google Scholar 

  28. Waterworth DM, Bennett ST, Gharani N et al (1997) Linkage and association of insulin gene VNTR regulatory polymorphism with polycystic ovary syndrome. Lancet 349:986–990

    Article  CAS  PubMed  Google Scholar 

  29. Michelmore K, Ong K, Mason S et al (2001) Clinical features in women with polycystic ovaries: relationships to insulin sensitivity, insulin gene VNTR and birth weight. Clin Endocrinol (Oxf) 55:439–446

    Article  CAS  Google Scholar 

  30. Eaves IA, Bennett ST, Forster P et al (1999) Transmission ratio distortion at the INS-IGF2 VNTR. Nat Genet 22:324–325

    Article  CAS  PubMed  Google Scholar 

  31. Calvo RM, Telleria D, Sancho J et al (2002) Insulin gene variable number of tandem repeats regulatory polymorphism is not associated with hyperandrogenism in Spanish women. Fertil Steril 77:666–668

    Article  PubMed  Google Scholar 

  32. Vankova M, Vrbikova J, Hill M et al (2002) Association of insulin gene VNTR polymorphism with polycystic ovary syndrome. Ann NY Acad Sci 967:558–565

    Article  CAS  PubMed  Google Scholar 

  33. Voutilainen R, Franks S, Mason HD, Martikainen H (1996) Expression of insulin-like growth factor (IGF), IGF-binding protein, and IGF receptor messenger ribonucleic acids in normal and polycystic ovaries. J Clin Endocrinol Metab 81:1003–1008

    CAS  PubMed  Google Scholar 

  34. Giudice LC (1999) Growth factor action on ovarian function in polycystic ovary syndrome. Endocrinol Metab Clin N Am 28:325–339

    Article  CAS  Google Scholar 

  35. San Millan JL, Corton M, Villuendas G et al (2004) Association of the polycystic ovary syndrome with genomic variants related to insulin resistance, type 2 diabetes mellitus, and obesity. J Clin Endocrinol Metab 89:2640–2646

    Article  CAS  PubMed  Google Scholar 

  36. Issemann I, Green S (1990) Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347(6294):645–650

    Article  CAS  PubMed  Google Scholar 

  37. Li AC, Glass CK (2004) PPAR- and LXR-dependent pathways controlling lipid metabolism and the development of atherosclerosis. J Lipid Res 45(12):2161–2173

    Article  CAS  PubMed  Google Scholar 

  38. Lakkakula B, Thangavelu M, Godla U (2013) Genetic variants associated with insulin signaling and glucose homeostasis in the pathogenesis of insulin resistance in polycystic ovary syndrome: a systematic review. J Assist Reprod Genet 30:883–895

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sreenan SK, Zhou YP, Otani K et al (2001) Calpains play a role in insulin secretion and action. Diabetes 50:2013–2020

    Article  CAS  PubMed  Google Scholar 

  40. Horikawa Y, Oda N, Cox NJ et al (2000) Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat Genet 26:163–175

    Article  CAS  PubMed  Google Scholar 

  41. Ehrmann DA, Schwarz PE, Hara M et al (2002) Relationship of calpain-10 genotype to phenotypic features of polycystic ovary syndrome. J Clin Endocrinol Metab 87:1669–1673

    Article  CAS  PubMed  Google Scholar 

  42. Haddad L, Evans JC, Gharani N et al (2002) Variation within the type 2 diabetes susceptibility gene calpain-10 and polycystic ovary syndrome. J Clin Endocrinol Metab 87:2606–2610

    Article  CAS  PubMed  Google Scholar 

  43. Gonzalez A, Abril E, Roca A et al (2002) CAPN10 alleles are associated with polycystic ovary syndrome. J Clin Endocrinol Metab 87:3971–3976

    Article  CAS  PubMed  Google Scholar 

  44. Gonzalez A, Abril E, Roca A et al (2003) Specific CAPN10 gene haplotypes influence the clinical profile of polycystic ovary patients. J Clin Endocrinol Metab 88:5529–5536

    Article  CAS  PubMed  Google Scholar 

  45. Bin Ali A, Zhang Q, Lim YK et al (2003) Expression of major HDL-associated antioxidant PON-1 is gender dependent and regulated during inflammation. Free Radic Biol Med 34:824–829

    Article  CAS  PubMed  Google Scholar 

  46. Rudich A, Kozlovsky N, Potashnik R, Bashan N (1997) Oxidant stress reduces insulin responsiveness in 3T3–L1 adipocytes. Am J Physiol 272:E935–E940

    CAS  PubMed  Google Scholar 

  47. Spaczynski RZ, Arici A, Duleba AJ (1999) Tumor necrosis factor-α stimulates proliferation of rat ovarian theca-interstitial cells. Biol Reprod 61:993–998

    Article  CAS  PubMed  Google Scholar 

  48. Escobar-Morreale HF, Calvo RM, Sancho J, San Millan JL (2001) TNF-α and hyperandrogenism: a clinical, biochemical, and molecular genetic study. J Clin Endocrinol Metab 86:3761–3767

    CAS  PubMed  Google Scholar 

  49. Bazzoni F, Beutler B (1996) The tumor necrosis factor ligand and receptor families. N Engl J Med 334:1717–1725

    Article  CAS  PubMed  Google Scholar 

  50. Peral B, San Millan JL, Castello R et al (2002) The methionine 196 arginine polymorphism in exon 6 of the TNF receptor 2 gene (TNFRSF1B) is associated with the polycystic ovary syndrome and hyperandrogenism. J Clin Endocrinol Metab 87:3977–3983

    Article  CAS  PubMed  Google Scholar 

  51. Omu AE, Al-Azemi MK, Makhseed M et al (2003) Differential expression of T-helper cytokines in the peritoneal fluid of women with normal ovarian cycle compared with women with chronic anovulation. Acta Obstet Gynecol Scand 82:603–609

    Article  PubMed  Google Scholar 

  52. Escobar-Morreale HF, Calvo RM, Villuendas G et al (2003) Association of polymorphisms in the interleukin 6 receptor complex with obesity and hyperandrogenism. Obes Res 11:987–996

    Article  CAS  PubMed  Google Scholar 

  53. Blackburn EH (2001) Switching and signaling at the telomere. Cell 106:661–673

    Article  CAS  PubMed  Google Scholar 

  54. Nordfjäll K, Larefalk A, Lindgren P et al (2005) Telomere length and heredity: indications of paternal inheritance. Proc Natl Acad Sci U S A 102:16374–16378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Li Q et al (2014) A possible new mechanism in the pathophysiology of polycystic ovary syndrome (PCOS): the discovery that leukocyte telomere length is strongly associated with PCOS. J Clin Endocrinol Metab 99(2):E234–E240

    Article  CAS  PubMed  Google Scholar 

  56. Topolino A, Nappi C (1995) PCOS and adrenal function. In: Genazzani, Petraglia, Facchinetti: Atti del 4th world congress of gynecological endocrinology. Madonna di Campiglio, Parthenon

    Google Scholar 

  57. Ciotta L, Carcò C, Di Grazia S, Palumbo G (1996) La sindrome dell’ovaio policistico: profilo etiopatogenetico, problematiche diagnostiche e terapeutiche. Riv Ost Gin 1:67

    Google Scholar 

  58. Udolff L, Adashi EY (1995) Polycystic ovarian disease: a new look at an old subject. Curr Opin Obstet Gynecol 7:340

    Google Scholar 

  59. Ehrman D, Barnes R, Rosenfield RL (1995) Polycystic ovary syndrome as a form of functional ovarian hyperandrogenism due to dysregulation of androgen secretion. Endocr Rev 16(3): 322–353

    Google Scholar 

  60. Gonzalez F, Speroff L (1990) Adrenal morphologic consideration in polycystic ovary syndrome. Obstet Gynecol Surv 45(8):491–508

    Article  CAS  PubMed  Google Scholar 

  61. De Fronzo RA (1988) Lilly lecture (1987). The triumvirate: β-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes 37(667–687):161

    Google Scholar 

  62. Bergman RN (2007) Orchestration of glucose homeostasis: from a small acorn to the California oak. Diabetes 56(1489–1501):162

    Google Scholar 

  63. Groop LC, Bonadonna RC, Simonson DC et al (1992) Effect of insulin on oxidative and non oxidative pathways of free fatty acid metabolism in human obesity. Am J Physiol 263:E79–E84

    CAS  PubMed  Google Scholar 

  64. Saltiel AR, Kahn CR (2001) Insulin signaling and the regulation of glucose and lipid metabolism. Nature 414:799–806

    Article  CAS  PubMed  Google Scholar 

  65. Kahn CR (1985) The molecular mechanism of insulin action. Ann Rev Med 36:429–451

    Article  CAS  PubMed  Google Scholar 

  66. Kasuga M, Zick Y, Blith DL et al (1982) Insulin stimulation of phosphorylation of the subunit of the insulin receptor. Formation of both phosphoserine and phosphotyrosine. J Biol Chem 257(244):9891–9894

    CAS  PubMed  Google Scholar 

  67. Shoelson SE, Boni-Schnetzler M, Pilch PF, Kahn CR (1991) Autophosphorylation within insulin receptor α-subunits can occur as an intramolecular process. Biochemistry 30:7740–7746

    Article  CAS  PubMed  Google Scholar 

  68. Cheatham B, Kahn CR (1995) Insulin action and the insulin signaling network. Endocr Rev 16:117–142

    CAS  PubMed  Google Scholar 

  69. Myers MG Jr, Sun XJ, White MF (1994) The IRS-1 signaling system. Trends Biochem Sci 19:289–293

    Article  CAS  PubMed  Google Scholar 

  70. Choi K, Kim YB (2010) Molecular mechanism of insulin resistance in obesity and type 2 diabetes. Korean J Intern Med 25:119–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dunaif A, Xia J, Book CB et al (1995) Excessive insulin receptor serine phosphorylation in cultured fibroblasts and in skeletal muscle. J Clin Invest 96:801–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dunaif A, Segal KR, Shelley DR et al (1992) Evidence for distinctive and intrinsic defects in insulin action in polycystic ovary syndrome. Diabetes 41:1257–1266

    Article  CAS  PubMed  Google Scholar 

  73. Ciaraldi TP, el-Roeiy A, Madar Z et al (1992) Cellular mechanisms of insulin resistance in polycystic ovarian syndrome. J Clin Endocrinol Metab 75:577–583

    CAS  PubMed  Google Scholar 

  74. Dunaif A, Wu X, Lee A, Diamanti-Kandarakis E (2001) Defects in insulin receptor signaling in vivo in the polycystic ovary syndrome (PCOS). Am J Physiol Endocrinol Metab 281:E392–E399

    CAS  PubMed  Google Scholar 

  75. Mathews ST, Chellam N, Srinivas PR et al (2000) Alpha2-HSG, a specific inhibitor of insulin receptor autophosphorylation, interacts with the insulin receptor. Mol Cell Endocrinol 164:87–98

    Article  CAS  PubMed  Google Scholar 

  76. Enli Y et al (2013) Serum fetuin-A levels, insulin resistance and oxidative stress in women with polycystic ovary syndrome. Gynecol Endocrinol 29(12):1036–1039

    Article  CAS  PubMed  Google Scholar 

  77. Hucking K, Watanabe RM, Stefanovski D, Bergman RN (2008) OGTT-derived measures of insulin sensitivity are confounded by factors other than insulin sensitivity itself. Obesity (Silver Spring) 16:1938–1945

    Article  CAS  Google Scholar 

  78. Flier JS, Minaker KL, Landsberg L et al (1982) Impaired in vivo insulin clearance in patients with severe target-cell resistance to insulin. Diabetes 31:132–135

    Article  CAS  PubMed  Google Scholar 

  79. Marshall S (1985) Kinetics of insulin receptor internalization and recycling in adipocytes. Shunting of receptors to a degradative pathway by inhibitors of recycling. J Biol Chem 260:4136–4144

    CAS  PubMed  Google Scholar 

  80. O’Meara NM, Blackman JD, Ehrmann DA et al (1993) Defects in β-cell function in functional ovarian hyperandrogenism. J Clin Endocrinol Metab 76:1241–1247

    PubMed  Google Scholar 

  81. Peiris AN, Mueller RA, Struve MF et al (1987) Relationship of androgenic activity to splanchnic insulin metabolism and peripheral glucose utilization in premenopausal women. J Clin Endocrinol Metab 64:162–169

    Article  CAS  PubMed  Google Scholar 

  82. El-Roeiy A, Chen X, Roberts VJ et al (1993) Expression of insulin-like growth factor-I (IGF-I) and IGF-II and the IGF-I, IGF-II, and insulin receptor genes and localization of the gene products in the human ovary. J Clin Endocrinol Metab 77:1411–1418

    CAS  PubMed  Google Scholar 

  83. El-Roeiy A, Chen X, Roberts VJ et al (1994) Expression of the genes encoding the insulin-like growth factors (IGF-I and II), the IGF and insulin receptors, and IGF-binding proteins-1–6 and the localization of their gene products in normal and polycystic ovary syndrome ovaries. J Clin Endocrinol Metab 78:1488–1496

    CAS  PubMed  Google Scholar 

  84. Czech MP (1982) Structural and functional homologies in the receptors for insulin and the insulin-like growth factors. Cell 31:8–10

    Article  CAS  PubMed  Google Scholar 

  85. Froesch ER, Zapf J (1985) Insulin-like growth factors and insulin: comparative aspects. Diabetologia 28:485–493

    Article  CAS  PubMed  Google Scholar 

  86. LeRoith D, Werner H, Beitner-Johnson D, Roberts CT Jr (1995) Molecular and cellular aspects of the insulin-like growth factor I receptor. Endocr Rev 16:143–163

    Article  CAS  PubMed  Google Scholar 

  87. Poretsky L (1991) On the paradox of insulin-induced hyperandrogenism in insulin-resistant states. Endocr Rev 12:3–13

    Article  CAS  PubMed  Google Scholar 

  88. Willis D, Franks S (1995) Insulin action in human granulosa cells from normal and polycystic ovaries is mediated by the insulin receptor and not the type-I insulin-like growth factor receptor. J Clin Endocrinol Metab 80:3788–3790

    CAS  PubMed  Google Scholar 

  89. Munir I, Yen HW, Geller DH et al (2004) Insulin augmentation of 17β-hydroxylase activity is mediated by phosphatidyl inositol 3-kinase but not extracellular signal- regulated kinase-1/2 in human ovarian theca cells. Endocrinology 145:175–183

    Article  CAS  PubMed  Google Scholar 

  90. Nestler JE, Jakubowicz DJ, de Vargas AF et al (1998) Insulin stimulates testosterone biosynthesis by human thecal cells from women with polycystic ovary syndrome by activating its own receptor and using inositolglycan mediators as the signal transduction system. J Clin Endocrinol Metab 83:2001–2005

    CAS  PubMed  Google Scholar 

  91. Barbieri RL, Makris A, Ryan KJ (1983) Effects of insulin on steroidogenesis in cultured porcine ovarian theca. Fertil Steril 40:237–241

    CAS  PubMed  Google Scholar 

  92. Nestler JE, Strauss JF 3rd (1991) Insulin as an effector of human ovarian and adrenal steroid metabolism. Endocrinol Metab Clin North Am 20:807–823

    CAS  PubMed  Google Scholar 

  93. Franks S, Gilling-Smith C, Watson H, Willis D (1999) Insulin action in the normal and polycystic ovary. Endocrinol Metab Clin North Am 28:361–378

    Article  CAS  PubMed  Google Scholar 

  94. Adashi EY, Hsueh AJ, Yen SS (1981) Insulin enhancement of luteinizing hormone and follicle-stimulating hormone release by cultured pituitary cells. Endocrinology 108:1441–1449

    Article  CAS  PubMed  Google Scholar 

  95. Micic D, Popovic V, Nesovic M et al (1988) Androgen levels during sequential insulin euglycemic clamp studies in patients with polycystic ovary disease. J Steroid Biochem 31:995–999

    Article  CAS  PubMed  Google Scholar 

  96. Dunaif A, Graf M (1989) Insulin administration alters gonadal steroid metabolism independent of changes in gonadotropin secretion in insulin-resistant women with the polycystic ovary syndrome. J Clin Invest 83:23–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nestler JE, Barlascini CO, Matt DW et al (1989) Suppression of serum insulin by diazoxide reduces serum testosterone levels in obese women with polycystic ovary syndrome. J Clin Endocrinol Metab 68:1027–1032

    Article  CAS  PubMed  Google Scholar 

  98. Plymate SR, Jones RE, Matej LA, Friedl KE (1988) Regulation of sex hormone binding globulin (SHBG) production in Hep G2 cells by insulin. Steroids 52:339–340

    Article  CAS  PubMed  Google Scholar 

  99. Nestler JE (1993) Sex hormone-binding globulin: a marker for hyperinsulinemia and/or insulin resistance? J Clin Endocrinol Metab 76:273–274

    Article  CAS  PubMed  Google Scholar 

  100. Dunaif A, Scott D, Finegood D et al (1996) The insulin-sensitizing agent troglitazone improves metabolic and reproductive abnormalities in the polycystic ovary syndrome. J Clin Endocrinol Metab 81:3299–3306

    CAS  PubMed  Google Scholar 

  101. Azziz R, Ehrmann DA, Legro RS et al (2003) Troglitazone decreases adrenal androgen levels in women with polycystic ovary syndrome. Fertil Steril 79:932–937

    Article  PubMed  Google Scholar 

  102. Lawson MA, Jain S, Sun S et al (2008) Evidence for insulin suppression of baseline luteinizing hormone in women with polycystic ovarian syndrome and normal women. J Clin Endocrinol Metab 93:2089–2096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Eagleson CA, Bellows AB, Hu K et al (2003) Obese patients with polycystic ovary syndrome: evidence that metformin does not restore sensitivity of the gonadotropin-releasing hormone pulse generator to inhibition by ovarian steroids. J Clin Endocrinol Metab 88:5158–5162

    Article  CAS  PubMed  Google Scholar 

  104. Book C, Dunaif A (1999) Selective insulin resistance in the polycystic ovary syndrome. J Clin Endocrinol Metab 84(9):3110–3116

    CAS  PubMed  Google Scholar 

  105. Diamanti-Kandarakis E, Dunaif A (2012) Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr Rev 33(6):981–1030

    Article  CAS  PubMed  Google Scholar 

  106. Villa J, Pratley RE (2011) Adipose tissue dysfunction in polycystic ovary syndrome. Curr Diab Rep 11:179–184

    Article  CAS  PubMed  Google Scholar 

  107. Festa A, D’Agostino R Jr, Howard G et al (2000) Chronic subclinical inflammation as part of the insulin resistance syndrome: the Insulin Resistance Atherosclerosis Study (IRAS). Circulation 102:42–47

    Article  CAS  PubMed  Google Scholar 

  108. Kim HS, Ali O, Shim M et al (2007) Insulin-like growth factor binding protein-3 induces insulin resistance in adipocytes in vitro and in rats in vivo. Pediatr Res 61:159–164

    Article  CAS  PubMed  Google Scholar 

  109. Lee H, Oh J-Y, Sung Y-A (2013) Adipokines, insulin-like growth factor binding protein-3 levels, and insulin sensitivity in women with polycystic ovary syndrome. Korean J Intern Med 28:456–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stracquadanio, M., Ciotta, L. (2015). Etiopathogenesis. In: Metabolic Aspects of PCOS. Springer, Cham. https://doi.org/10.1007/978-3-319-16760-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16760-2_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16759-6

  • Online ISBN: 978-3-319-16760-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics