Skip to main content

Living Large: What Mouse Models Reveal about Growth Hormone and Obesity

  • Chapter
  • First Online:
Murine Models, Energy Balance, and Cancer

Part of the book series: Energy Balance and Cancer ((EBAC,volume 10))

Abstract

Growth hormone (GH) regulates a broad spectrum of biological processes in addition to promoting longitudinal growth. As such, GH influences most organ and cellular systems in the body with adipose tissue being one of its well-established targets. This chapter will describe mouse lines with specific alteration in GH action. Mice with increased, decreased, and absence of GH action have a unique phenotype for which clinical equivalents exist (acromegaly, GH deficiency, and Laron syndrome, respectively). Interestingly, these mouse lines demonstrate adiposity profiles that are counterintuitive to health and longevity. That is, mice with excess GH action are lean but insulin resistant, prone to cancer, and short-lived (or “unhealthy lean”). On the other hand, mice with no GH action are obese but insulin sensitive, resistant to cancer, and long-lived (or “healthy obesity”). These extremes in GH action provide fascinating mouse strains with which to study the features of fat that are responsible for metabolic dysfunction and to explore traits that are obligatory for cancer or lifespan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Trayhurn P, Beattie JH. Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. Proc Nutr Soc. 2001;60(3):329–39.

    CAS  PubMed  Google Scholar 

  2. Galic S, Oakhill JS, Steinberg GR. Adipose tissue as an endocrine organ. Mol Cell Endocrinol. 2010;316(2):129–39.

    CAS  PubMed  Google Scholar 

  3. Bahceci M, Gokalp D, Bahceci S, Tuzcu A, Atmaca S, Arikan S. The correlation between adiposity and adiponectin, tumor necrosis factor alpha, interleukin-6 and high sensitivity C-reactive protein levels. Is adipocyte size associated with inflammation in adults? J Endocrinol Invest. 2007;30(3):210–14.

    CAS  PubMed  Google Scholar 

  4. Lass A, Zimmermann R, Oberer M, Zechner R. Lipolysis—a highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores. Prog Lipid Res. 2011;50(1):14–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Fain JN, Madan AK, Hiler ML, Cheema P, Bahouth SW. Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. Endocrinology. 2004;145(5):2273–82.

    CAS  PubMed  Google Scholar 

  6. Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab. 2004; 89(6):2548–56.

    CAS  PubMed  Google Scholar 

  7. Wajchenberg BL, Giannella-Neto D, da Silva ME, Santos RF. Depot-specific hormonal characteristics of subcutaneous and visceral adipose tissue and their relation to the metabolic syndrome. Horm Metab Res. 2002;34(11–12):616–21.

    CAS  PubMed  Google Scholar 

  8. Smorlesi A, Frontini A, Giordano A, Cinti S. The adipose organ: white-brown adipocyte plasticity and metabolic inflammation. Obes Rev. 2012;13(Suppl 2):83–96.

    CAS  PubMed  Google Scholar 

  9. Vanderburgh PM. Fat distribution: its physiological significance, health implications, and its adaptation to exercise training. Mil Med. 1992;157(4):189–92.

    CAS  PubMed  Google Scholar 

  10. Cinti S. The adipose organ. Prostaglandins Leukot Essent Fatty Acids. 2005;73(1):9–15.

    CAS  PubMed  Google Scholar 

  11. Giordano A, Frontini A, Castellucci M, Cinti S. Presence and distribution of cholinergic nerves in rat mediastinal brown adipose tissue. J Histochem Cytochem. 2004;52(7):923–30.

    CAS  PubMed  Google Scholar 

  12. Wajchenberg BL. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev. 2000;21(6):697–738.

    CAS  PubMed  Google Scholar 

  13. Tran TT, Yamamoto Y, Gesta S, Kahn CR. Beneficial effects of subcutaneous fat transplantation on metabolism. Cell Metab. 2008;7(5):410–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Trayhurn P, Wood IS. Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br J Nutr. 2004;92(3):347–55.

    CAS  PubMed  Google Scholar 

  15. Klok MD, Jakobsdottir S, Drent ML. The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review. Obes Rev. 2007;8(1):21–34.

    CAS  PubMed  Google Scholar 

  16. Lindstrom P. The physiology of obese-hyperglycemic mice [ob/ob mice]. ScientificWorldJournal. 2007;7:666–85.

    PubMed  Google Scholar 

  17. Drel VR, Mashtalir N, Ilnytska O, Shin J, Li F, Lyzogubov VV, Obrosova IG. The leptin-deficient (ob/ob) mouse: a new animal model of peripheral neuropathy of type 2 diabetes and obesity. Diabetes. 2006;55(12):3335–43.

    CAS  PubMed  Google Scholar 

  18. Kobayashi K, Forte TM, Taniguchi S, Ishida BY, Oka K, Chan L. The db/db mouse, a model for diabetic dyslipidemia: molecular characterization and effects of Western diet feeding. Metabolism. 2000;49(1):22–31.

    CAS  PubMed  Google Scholar 

  19. Houseknecht KL, Baile CA, Matteri RL, Spurlock ME. The biology of leptin: a review. J Anim Sc.i 1998;76(5):1405–20.

    CAS  Google Scholar 

  20. Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, Sugiyama T, Miyagishi M, Hara K, Tsunoda M, et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature. 2003;423(6941):762–9.

    CAS  PubMed  Google Scholar 

  21. Hara K, Horikoshi M, Yamauchi T, Yago H, Miyazaki O, Ebinuma H, Imai Y, Nagai R, Kadowaki T. Measurement of the high-molecular weight form of adiponectin in plasma is useful for the prediction of insulin resistance and metabolic syndrome. Diabetes Care. 2006;29(6):1357–62.

    CAS  PubMed  Google Scholar 

  22. Wang Y, Lam KS, Yau MH, Xu A. Post-translational modifications of adiponectin: mechanisms and functional implications. Biochem J. 2008;409(3):623–33.

    CAS  PubMed  Google Scholar 

  23. Kubota N, Terauchi Y, Yamauchi T, Kubota T, Moroi M, Matsui J, Eto K, Yamashita T, Kamon J, Satoh H, et al. Disruption of adiponectin causes insulin resistance and neointimal formation. J Biol Chem. 2002;277(29):25863–6.

    CAS  PubMed  Google Scholar 

  24. Maeda N, Shimomura I, Kishida K, Nishizawa H, Matsuda M, Nagaretani H, Furuyama N, Kondo H, Takahashi M, Arita Y, et al. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med. 2002;8(7):731–7.

    CAS  PubMed  Google Scholar 

  25. Combs TP, Pajvani UB, Berg AH, Lin Y, Jelicks LA, Laplante M, Nawrocki AR, Rajala MW, Parlow AF, Cheeseboro L, et al. A transgenic mouse with a deletion in the collagenous domain of adiponectin displays elevated circulating adiponectin and improved insulin sensitivity. Endocrinology. 2004;145(1):367–83.

    CAS  PubMed  Google Scholar 

  26. Martyn JA, Kaneki M, Yasuhara S. Obesity-induced insulin resistance and hyperglycemia: etiologic factors and molecular mechanisms. Anesthesiology. 2008;109(1):137–48.

    PubMed  Google Scholar 

  27. Strissel KJ, Stancheva Z, Miyoshi H, Perfield JW, 2nd, DeFuria J, Jick Z, Greenberg AS, Obin MS. Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes. 2007;56(12):2910–8.

    CAS  PubMed  Google Scholar 

  28. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW, Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112(12):1796–808.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Strawford A, Antelo F, Christiansen M, Hellerstein MK. Adipose tissue triglyceride turnover, de novo lipogenesis, and cell proliferation in humans measured with 2 H2O. Am J Physiol Endocrinol Metab. 2004;286(4):E577–88.

    CAS  PubMed  Google Scholar 

  30. Khan T, Muise ES, Iyengar P, Wang ZV, Chandalia M, Abate N, Zhang BB, Bonaldo P, Chua S, Scherer PE. Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI. Mol Cell Biol. 2009;29(6):1575–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Morris DL, Singer K, Lumeng CN. Adipose tissue macrophages: phenotypic plasticity and diversity in lean and obese states. Curr Opin Clin Nutr Metab Care. 2011;14(4):341–6.

    PubMed  Google Scholar 

  32. Cinti S, Mitchell G, Barbatelli G, Murano I, Ceresi E, Faloia E, Wang S, Fortier M, Greenberg AS, Obin MS. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res. 2005;46(11):2347–55.

    CAS  PubMed  Google Scholar 

  33. Turer AT, Khera A, Ayers CR, Turer CB, Grundy SM, Vega GL, Scherer PE. Adipose tissue mass and location affect circulating adiponectin levels. Diabetologia. 2011;54(10):2515–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Lim S, Quon MJ, Koh KK. Modulation of adiponectin as a potential therapeutic strategy. Atherosclerosis. 2014;233(2):721–8.

    CAS  PubMed  Google Scholar 

  35. Levin BE, Dunn-Meynell AA. Reduced central leptin sensitivity in rats with diet-induced obesity. Am J Physiol Regul Integr Comp Physiol. 2002;283(4):R941–8.

    PubMed  Google Scholar 

  36. Heymsfield SB, Greenberg AS, Fujioka K, Dixon RM, Kushner R, Hunt T, Lubina JA, Patane J, Self B, Hunt P, et al. Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. JAMA. 1999;282(16):1568–75.

    CAS  PubMed  Google Scholar 

  37. Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet. 2008;371(9612):569–78.

    PubMed  Google Scholar 

  38. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med. 2003;348(17):1625–38.

    PubMed  Google Scholar 

  39. Maquoi E, Munaut C, Colige A, Collen D, Lijnen HR. Modulation of adipose tissue expression of murine matrix metalloproteinases and their tissue inhibitors with obesity. Diabetes. 2002;51(4):1093–01.

    CAS  PubMed  Google Scholar 

  40. Motrescu ER, Rio MC. Cancer cells, adipocytes and matrix metalloproteinase 11: a vicious tumor progression cycle. Biol Chem. 2008;389(8):1037–41.

    CAS  PubMed  Google Scholar 

  41. Howard JM, Pidgeon GP, Reynolds JV. Leptin and gastro-intestinal malignancies. Obes Rev. 2010;11(12):863–74.

    CAS  PubMed  Google Scholar 

  42. Hardwick JC, Van Den Brink GR, Offerhaus GJ, Van Deventer SJ, Peppelenbosch MP. Leptin is a growth factor for colonic epithelial cells. Gastroenterology. 2001;121(1):79–90.

    CAS  PubMed  Google Scholar 

  43. Dieudonne MN, Machinal-Quelin F, Serazin-Leroy V, Leneveu MC, Pecquery R, Giudicelli Y. Leptin mediates a proliferative response in human MCF7 breast cancer cells. Biochem Biophys Res Commun. 2002;293(1):622–8.

    CAS  PubMed  Google Scholar 

  44. Onuma M, Bub JD, Rummel TL, Iwamoto Y. Prostate cancer cell-adipocyte interaction: leptin mediates androgen-independent prostate cancer cell proliferation through c-Jun NH2-terminal kinase. J Biol Chem. 2003;278(43):42660–7.

    CAS  PubMed  Google Scholar 

  45. Bub JD, Miyazaki T, Iwamoto Y. Adiponectin as a growth inhibitor in prostate cancer cells. Biochem Biophys Res Commun. 2006;340(4):1158–66.

    CAS  PubMed  Google Scholar 

  46. Kim AY, Lee YS, Kim KH, Lee JH, Lee HK, Jang SH, Kim SE, Lee GY, Lee JW, Jung SA, et al. Adiponectin represses colon cancer cell proliferation via AdipoR1- and -R2-mediated AMPK activation. Mol Endocrinol. 2010;24(7):1441–52.

    CAS  PubMed  Google Scholar 

  47. Cohen CA, Shea AA, Heffron CL, Schmelz EM, Roberts PC. Intra-abdominal fat depots represent distinct immunomodulatory microenvironments: a murine model. PLoS One. 2013;8(6):e66477.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Tateya S, Kim F, Tamori Y. Recent advances in obesity-induced inflammation and insulin resistance. Front Endocrinol (Lausanne). 2013;4:93.

    PubMed Central  PubMed  Google Scholar 

  49. Patel PS, Buras ED, Balasubramanyam A. The role of the immune system in obesity and insulin resistance. J Obes. 2013;2013:616193.

    PubMed Central  PubMed  Google Scholar 

  50. Wu D, Molofsky AB, Liang HE, Ricardo-Gonzalez RR, Jouihan HA, Bando JK, Chawla A, Locksley RM: Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science. 2011;332(6026):243–247.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Rothenberg ME, Hogan SP. The eosinophil. Annu Rev Immunol. 2006;24:147–74.

    CAS  PubMed  Google Scholar 

  52. Sun S, Ji Y, Kersten S, Qi L. Mechanisms of inflammatory responses in obese adipose tissue. Annu Rev Nutr. 2012;32:261–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Altintas MM, Azad A, Nayer B, Contreras G, Zaias J, Faul C, Reiser J, Nayer A. Mast cells, macrophages, and crown-like structures distinguish subcutaneous from visceral fat in mice. J Lipid Res. 2011;52(3):480–88.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Pollak M. Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer. 2008;8(12):915–28.

    CAS  PubMed  Google Scholar 

  55. Renehan AG, Frystyk J, Flyvbjerg A. Obesity and cancer risk: the role of the insulin-IGF axis. Trends Endocrinol Metab. 2006;17(8):328–36.

    CAS  PubMed  Google Scholar 

  56. Baumann G. Growth hormone heterogeneity: genes, isohormones, variants, and binding proteins. Endocr Rev. 1991;12(4):424–49.

    CAS  PubMed  Google Scholar 

  57. Kopchick JJ. Growth hormone receptor antagonists and methods of reducing growth hormone activity in mammals. In: United States Patent. U. S. A.: Ohio University; 1999.

    Google Scholar 

  58. Ho KK, O'Sullivan AJ, Hoffman DM. Metabolic actions of growth hormone in man. Endocr J 1996;43 Suppl:S57–63.

    Google Scholar 

  59. Ohlsson C, Sjogren K, Jansson JO, Isaksson OG. The relative importance of endocrine versus autocrine/paracrine insulin-like growth factor-I in the regulation of body growth. Pediatr Nephrol. 2000;14(7):541–3.

    CAS  PubMed  Google Scholar 

  60. Krysiak R, Gdula-Dymek A, Bednarska-Czerwinska A, Okopien B. Growth hormone therapy in children and adults. Pharmacol Rep. 2007;59(5):500–16.

    CAS  PubMed  Google Scholar 

  61. Khan AS, Sane DC, Wannenburg T, Sonntag WE. Growth hormone, insulin-like growth factor-1 and the aging cardiovascular system. Cardiovasc Res. 2002;54(1):25–35.

    CAS  PubMed  Google Scholar 

  62. Romero CJ, Pine-Twaddell E, Sima DI, Miller RS, He L, Wondisford F, Radovick S. Insulin-like growth factor 1 mediates negative feedback to somatotroph GH expression via POU1F1/CREB binding protein interactions. Mol Cell Biol. 2012;32(21):4258–69.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Brooks AJ, Dai W, O'Mara ML, Abankwa D, Chhabra Y, Pelekanos RA, Gardon O, Tunny KA, Blucher KM, Morton CJ, et al. Mechanism of activation of protein kinase JAK2 by the growth hormone receptor. Science. 2014;344(6185):1249783.

    PubMed  Google Scholar 

  64. Zhu T, Ling L, Lobie PE. Identification of a JAK2-independent pathway regulating growth hormone (GH)-stimulated p44/42 mitogen-activated protein kinase activity. GH activation of Ral and phospholipase D is Src-dependent. J Biol Chem. 2002;277(47):45592–603.

    CAS  PubMed  Google Scholar 

  65. Moller N, Jorgensen JO. Effects of growth hormone on glucose, lipid, and protein metabolism in human subjects. Endocr Rev. 2009;30(2):152–77.

    PubMed  Google Scholar 

  66. Kraemer FB, Shen WJ. Hormone-sensitive lipase: control of intracellular tri-(di-)acylglycerol and cholesteryl ester hydrolysis. J Lipid Res. 2002;43(10):1585–94.

    CAS  PubMed  Google Scholar 

  67. Moller N, Jorgensen JO, Abildgard N, Orskov L, Schmitz O, Christiansen JS: Effects of growth hormone on glucose metabolism. Horm Res. 1991;36(Suppl 1):32–35.

    PubMed  Google Scholar 

  68. Rabinowitz D, Klassen GA, Zierler KL. Effect of human growth hormone on muscle and adipose tissue metabolism in the forearm of man. J Clin Invest. 1965;44:51–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Jorgensen JO, Moller L, Krag M, Billestrup N, Christiansen JS. Effects of growth hormone on glucose and fat metabolism in human subjects. Endocrinol Metab Clin North Am. 2007;36(1):75–87.

    PubMed  Google Scholar 

  70. Jorgensen JO, Jessen N, Pedersen SB, Vestergaard E, Gormsen L, Lund SA, Billestrup N. GH receptor signaling in skeletal muscle and adipose tissue in human subjects following exposure to an intravenous GH bolus. Am J Physiol Endocrinol Metab. 2006;291(5):E899–905.

    PubMed  Google Scholar 

  71. Mulligan K, Tai VW, Schambelan M. Effects of chronic growth hormone treatment on energy intake and resting energy metabolism in patients with human immunodeficiency virus-associated wasting–a clinical research center study. J Clin Endocrinol Metab. 1998;83(5):1542–47.

    CAS  PubMed  Google Scholar 

  72. Karlsson C, Stenlof K, Johannsson G, Marin P, Bjorntorp P, Bengtsson BA, Carlsson B, Carlsson LM, Sjostrom L. Effects of growth hormone treatment on the leptin system and on energy expenditure in abdominally obese men. Eur J Endocrinol. 1998;138(4):408–14.

    CAS  PubMed  Google Scholar 

  73. Jenkins PJ, Mukherjee A, Shalet SM. Does growth hormone cause cancer? Clin Endocrinol (Oxf). 2006;64(2):115–21.

    CAS  Google Scholar 

  74. Guevara-Aguirre J, Balasubramanian P, Guevara-Aguirre M, Wei M, Madia F, Cheng CW, Hwang D, Martin-Montalvo A, Saavedra J, Ingles S, et al. Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer, and diabetes in humans. Sci Transl Med. 2011;3(70):70ra13.

    PubMed Central  PubMed  Google Scholar 

  75. Zatelli MC, Minoia M, Mole D, Cason V, Tagliati F, Margutti A, Bondanelli M, Ambrosio MR, degli Uberti E. Growth hormone excess promotes breast cancer chemoresistance. The J Clin Endocrinol Metab. 2009;94(10):3931–8.

    CAS  PubMed  Google Scholar 

  76. Rinaldi S, Peeters PH, Berrino F, Dossus L, Biessy C, Olsen A, Tjonneland A, Overvad K, Clavel-Chapelon F, Boutron-Ruault MC, et al. IGF-1, IGFBP-3 and breast cancer risk in women: The European Prospective Investigation into Cancer and Nutrition (EPIC). Endocr Relat Cancer. 2006;13(2):593–605.

    CAS  PubMed  Google Scholar 

  77. Thijssen JH. On the possible role of mammary-derived growth hormone in human breast cancer. Maturitas. 2009;65 Suppl 1:S13–6.

    CAS  PubMed  Google Scholar 

  78. Decouvelaere C, Peyrat JP, Bonneterre J, Djiane J, Jammes H. Presence of the two growth hormone receptor messenger RNA isoforms in human breast cancer. Cell Growth Differ. 1995;6(4):477–83.

    CAS  Google Scholar 

  79. Gebre-Medhin M, Kindblom LG, Wennbo H, Tornell J, Meis-Kindblom JM. Growth hormone receptor is expressed in human breast cancer. Am J Pathol. 2001;158(4):1217–1222.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Nakonechnaya AO, Jefferson HS, Chen X, Shewchuk BM. Differential effects of exogenous and autocrine growth hormone on LNCaP prostate cancer cell proliferation and survival. J Cell Biochem. 2013;114(6):1322–35.

    CAS  PubMed  Google Scholar 

  81. Untergasser G, Rumpold H, Hermann M, Dirnhofer S, Jilg G, Berger P. Proliferative disorders of the aging human prostate: involvement of protein hormones and their receptors. Exp Gerontol. 1999;34(2):275–87.

    CAS  PubMed  Google Scholar 

  82. Chopin LK, Veveris-Lowe TL, Philipps AF, Herington AC. Co-expression of GH and GHR isoforms in prostate cancer cell lines. Growth Horm IGF Res. 2002;12(2):126–36.

    Google Scholar 

  83. Weiss-Messer E, Merom O, Adi A, Karry R, Bidosee M, Ber R, Kaploun A, Stein A, Barkey RJ. Growth hormone (GH) receptors in prostate cancer: gene expression in human tissues and cell lines and characterization, GH signaling and androgen receptor regulation in LNCaP cells. Mol Cell Endocrinol. 2004;220(1–2):109–23.

    CAS  PubMed  Google Scholar 

  84. Chokkalingam AP, Pollak M, Fillmore CM, Gao YT, Stanczyk FZ, Deng J, Sesterhenn IA, Mostofi FK, Fears TR, Madigan MP, et al. Insulin-like growth factors and prostate cancer: a population-based case-control study in China. Cancer Epidemiol Biomarkers Prev. 2001;10(5):421–7.

    Google Scholar 

  85. Dagdelen S, Cinar N, Erbas T. Increased thyroid cancer risk in acromegaly. Pituitary 2013.

    Google Scholar 

  86. Renehan AG, Brennan BM: Acromegaly, growth hormone and cancer risk. Best Pract Res Clin Endocrinol Metab. 2008;22(4):639–57.

    CAS  PubMed  Google Scholar 

  87. Svensson J, Kindblom J, Shao R, Moverare-Skrtic S, Lagerquist MK, Andersson N, Sjogren K, Venken K, Vanderschueren D, Jansson JO, et al. Liver-derived IGF1 enhances the androgenic response in prostate. J Endocrinol. 2008;199(3):489–97.

    CAS  PubMed  Google Scholar 

  88. Kopchick JJ, List EO, Kelder B, Gosney ES, Berryman DE. Evaluation of growth hormone (GH) action in mice: discovery of GH receptor antagonists and clinical indications. Mol Cell Endocrinol. 2013.

    Google Scholar 

  89. Li S, Crenshaw EB, 3rd, Rawson EJ, Simmons DM, Swanson LW, Rosenfeld MG. Dwarf locus mutants lacking three pituitary cell types result from mutations in the POU-domain gene pit-1. Nature. 1990;347(6293):528–33.

    CAS  PubMed  Google Scholar 

  90. Buckwalter MS, Katz RW, Camper SA: Localization of the panhypopituitary dwarf mutation (df) on mouse chromosome 11 in an intersubspecific backcross. Genomics. 1991;10(3):515–26.

    CAS  PubMed  Google Scholar 

  91. Berryman DE, List EO, Sackmann-Sala L, Lubbers E, Munn R, Kopchick JJ. Growth hormone and adipose tissue: beyond the adipocyte. Growth Horm IGF Res. 2011;21(3):113–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Kopchick JJ, Bellush LL, Coschigano KT. Transgenic models of growth hormone action. Annu Rev Nutr. 1999;19:437–61.

    CAS  PubMed  Google Scholar 

  93. Palmiter RD, Brinster RL, Hammer RE, Trumbauer ME, Rosenfeld MG, Birnberg NC, Evans RM. Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature. 1982;300(5893):611–5.

    CAS  PubMed  Google Scholar 

  94. Kaps M, Moura AS, Safranski TJ, Lamberson WR. Components of growth in mice hemizygous for a MT/bGH transgene. J Anim Sci. 1999;77(5):1148–54.

    CAS  PubMed  Google Scholar 

  95. Knapp JR, Chen WY, Turner ND, Byers FM, Kopchick JJ. Growth patterns and body composition of transgenic mice expressing mutated bovine somatotropin genes. J Anim Sci. 1994;72(11):2812.

    CAS  PubMed  Google Scholar 

  96. Palmer AJ, Chung MY, List EO, Walker J, Okada S, Kopchick JJ, Berryman DE. Age-related changes in body composition of bovine growth hormone transgenic mice. Endocrinology. 2009;150(3):1353–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Bartke A. Can growth hormone (GH) accelerate aging? Evidence from GH-transgenic mice. Neuroendocrinology. 2003;78(4):210–6.

    CAS  PubMed  Google Scholar 

  98. Wolf E, Kahnt E, Ehrlein J, Hermanns W, Brem G, Wanke R. Effects of long-term elevated serum levels of growth hormone on life expectancy of mice: lessons from transgenic animal models. Mech Ageing Dev. 1993;68(1–3):71–87.

    CAS  PubMed  Google Scholar 

  99. Jara A, Benner CM, Sim D, Liu X, List EO, Householder LA, Berryman DE, Kopchick JJ. Elevated systolic blood pressure in male GH transgenic mice is age dependent. Endocrinology. 2014;155(3):975–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Ding J, Berryman DE, Kopchick JJ. Plasma proteomic profiles of bovine growth hormone transgenic mice as they age. Transgenic Res. 2011;20(6):1305–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Izzard AS, Emerson M, Prehar S, Neyses L, Trainer P, List EO, Kopchick JJ, Heagerty AM. The cardiovascular phenotype of a mouse model of acromegaly. Growth Horm IGF Res. 2009.

    Google Scholar 

  102. Bogazzi F, Russo D, Raggi F, Ultimieri F, Urbani C, Gasperi M, Bartalena L, Martino E. Transgenic mice overexpressing growth hormone (GH) have reduced or increased cardiac apoptosis through activation of multiple GH-dependent or -independent cell death pathways. Endocrinology. 2008;149(11):5758–69.

    CAS  PubMed  Google Scholar 

  103. Bollano E, Omerovic E, Bohlooly-y M, Kujacic V, Madhu B, Tornell J, Isaksson O, Soussi B, Schulze W, Fu ML, et al. Impairment of cardiac function and bioenergetics in adult transgenic mice overexpressing the bovine growth hormone gene. Endocrinology. 2000;141(6):2229–35.

    CAS  PubMed  Google Scholar 

  104. Doi T, Striker LJ, Kimata K, Peten EP, Yamada Y, Striker GE. Glomerulosclerosis in mice transgenic for growth hormone. Increased mesangial extracellular matrix is correlated with kidney mRNA levels. J Exp Med. 1991;173(5):1287–90.

    CAS  PubMed  Google Scholar 

  105. Kumar PA, Brosius FC, 3rd, Menon RK. The glomerular podocyte as a target of growth hormone action: implications for the pathogenesis of diabetic nephropathy. Curr Diabetes Rev. 2011;7(1):50–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Bohlooly YM, Olsson B, Bruder CE, Linden D, Sjogren K, Bjursell M, Egecioglu E, Svensson L, Brodin P, Waterton JC, et al. Growth hormone overexpression in the central nervous system results in hyperphagia-induced obesity associated with insulin resistance and dyslipidemia. Diabetes. 2005;54(1):51–62.

    CAS  PubMed  Google Scholar 

  107. Zhou Y, Xu BC, Maheshwari HG, He L, Reed M, Lozykowski M, Okada S, Cataldo L, Coschigamo K, Wagner TE, et al. A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse). Proc Natl Acad Sci U S A. 1997;94(24):13215–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Laron Z, Kopchick J. Laron syndrome—from man to mouse lessons from clinical and experimental experience. Berlin; New York: Springer; 2011: 1 online resource (xiv, 531 p.).

    Google Scholar 

  109. List EO, Sackmann-Sala L, Berryman DE, Funk K, Kelder B, Gosney ES, Okada S, Ding J, Cruz-Topete D, Kopchick JJ. Endocrine parameters and phenotypes of the growth hormone receptor gene disrupted (GHR-/-) mouse. Endocr Rev. 2011;32(3):356–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Coschigano KT, Clemmons D, Bellush LL, Kopchick JJ: Assessment of growth parameters and life span of GHR/BP gene-disrupted mice. Endocrinology. 2000;141(7):2608–13.

    CAS  PubMed  Google Scholar 

  111. Coschigano KT, Holland AN, Riders ME, List EO, Flyvbjerg A, Kopchick JJ. Deletion, but not antagonism, of the mouse growth hormone receptor results in severely decreased body weights, insulin and IGF-1 levels and increased lifespan. Endocrinology. 2003;144(9):3799–810.

    CAS  PubMed  Google Scholar 

  112. Berryman DE, List EO, Kohn DT, Coschigano KT, Seeley RJ, Kopchick JJ. Effect of growth hormone on susceptibility to diet-induced obesity. Endocrinology. 2006;147(6):2801–8.

    CAS  PubMed  Google Scholar 

  113. Panici JA, Wang F, Bonkowski MS, Spong A, Bartke A, Pawlikowska L, Kwok PY, Masternak MM. Is altered expression of hepatic insulin-related genes in growth hormone receptor knockout mice due to GH resistance or a difference in biological life spans? J Gerontol A Biol Sci Med Sci. 2009;64(11):1126–33.

    PubMed  Google Scholar 

  114. Egecioglu E, Bjursell M, Ljungberg A, Dickson SL, Kopchick JJ, Bergstrom G, Svensson L, Oscarsson J, Tornell J, Bohlooly YM. Growth hormone receptor deficiency results in blunted ghrelin feeding response, obesity, and hypolipidemia in mice. Am J Physiol Endocrinol Metab. 2006;290(2):E317–25.

    CAS  PubMed  Google Scholar 

  115. Liu JL, Coschigano KT, Robertson K, Lipsett M, Guo Y, Kopchick JJ, Kumar U, Liu YL. Disruption of growth hormone receptor gene causes diminished pancreatic islet size and increased insulin sensitivity in mice. Am J Physiol Endocrinol Metab. 2004;287(3):E405–13.

    CAS  PubMed  Google Scholar 

  116. Bartke A, Peluso MR, Moretz N, Wright C, Bonkowski M, Winters TA, Shanahan MF, Kopchick JJ, Banz WJ. Effects of Soy-derived diets on plasma and liver lipids, glucose tolerance, and longevity in normal, long-lived and short-lived mice. Horm Metab Res. 2004;36(8):550–8.

    CAS  PubMed  Google Scholar 

  117. Hauck SJ, Hunter WS, Danilovich N, Kopchick JJ, Bartke A. Reduced levels of thyroid hormones, insulin, and glucose, and lower body core temperature in the growth hormone receptor/binding protein knockout mouse. Exp Biol Med (Maywood). 2001;226(6):552–8.

    CAS  Google Scholar 

  118. Dominici FP, Arostegui Diaz G, Bartke A, Kopchick JJ, Turyn D. Compensatory alterations of insulin signal transduction in liver of growth hormone receptor knockout mice. J Endocrinol. 2000;166(3):579–90.

    CAS  PubMed  Google Scholar 

  119. Bonkowski MS, Dominici FP, Arum O, Rocha JS, Al Regaiey KA, Westbrook R, Spong A, Panici J, Masternak MM, Kopchick JJ, et al. Disruption of growth hormone receptor prevents calorie restriction from improving insulin action and longevity. PLoS One 2009;4(2):e4567.

    PubMed Central  PubMed  Google Scholar 

  120. Al-Regaiey KA, Masternak MM, Bonkowski M, Sun L, Bartke A. Long-lived growth hormone receptor knockout mice: interaction of reduced insulin-like growth factor i/insulin signaling and caloric restriction. Endocrinology. 2005;146(2):851–60.

    CAS  PubMed  Google Scholar 

  121. Junnila RK, List EO, Berryman DE, Murrey JW, Kopchick JJ. The GH/IGF-1 axis in ageing and longevity. Nat Rev Endocrinol. 2013;9(6):366–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Chen WY, Wight DC, Wagner TE, Kopchick JJ. Expression of a mutated bovine growth hormone gene suppresses growth of transgenic mice. Proc Natl Acad Sci U S A. 1990;87(13):5061–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Chen WY, White ME, Wagner TE, Kopchick JJ. Functional antagonism between endogenous mouse growth hormone (GH) and a GH analog results in dwarf transgenic mice. Endocrinology. 1991;129(3):1402–8.

    CAS  PubMed  Google Scholar 

  124. Chen WY, Wight DC, Chen NY, Coleman TA, Wagner TE, Kopchick JJ. Mutations in the third alpha-helix of bovine growth hormone dramatically affect its intracellular distribution in vitro and growth enhancement in transgenic mice. J Biol Chem. 1991;266(4):2252–8.

    CAS  PubMed  Google Scholar 

  125. Chen WY, Wight DC, Mehta BV, Wagner TE, Kopchick JJ. Glycine 119 of bovine growth hormone is critical for growth-promoting activity. Mol Endocrinol. 1991;5(12):1845–52.

    CAS  PubMed  Google Scholar 

  126. Okada S, Chen WY, Wiehl P, Kelder B, Goodman HM, Guller S, Sonenberg M, Kopchick JJ. A growth hormone (GH) analog can antagonize the ability of native GH to promote differentiation of 3T3-F442A preadipocytes and stimulate insulin-like and lipolytic activities in primary rat adipocytes. Endocrinology. 1992;130(4):2284–90.

    CAS  PubMed  Google Scholar 

  127. Kopchick JJ. Discovery and mechanism of action of pegvisomant. Eur J Endocrinol. 2003;148 Suppl 2:S21–5.

    CAS  PubMed  Google Scholar 

  128. Berryman DE, Lubbers ER, Magon V, List EO, Kopchick JJ. A dwarf mouse model with decreased GH/IGF-1 activity that does not experience life-span extension: potential impact of increased adiposity, leptin, and insulin with advancing age. J Gerontol A Biol Sci Med Sci. 2014;69(2):131–41.

    CAS  PubMed  Google Scholar 

  129. Flyvbjerg A, Bennet WF, Rasch R, Kopchick JJ, Scarlett JA. Inhibitory effect of a growth hormone receptor antagonist (G120K-PEG) on renal enlargement, glomerular hypertrophy and urinary albumin excretion in experimental diabetes in mice. Diabetes. 1999;48:377–82.

    CAS  PubMed  Google Scholar 

  130. Chen NY, Chen WY, Striker LJ, Striker GE, Kopchick JJ. Co-expression of bovine growth hormone (GH) and human GH antagonist genes in transgenic mice. Endocrinology. 1997;138(2):851–4.

    CAS  PubMed  Google Scholar 

  131. Yakar S, Setser J, Zhao H, Stannard B, Haluzik M, Glatt V, Bouxsein ML, Kopchick JJ, LeRoith D. Inhibition of growth hormone action improves insulin sensitivity in liver IGF-1-deficient mice. J Clin Invest. 2004;113(1):96–105.

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Pomp D, Oberbauer AM, Murray JD. Development of obesity following inactivation of a growth hormone transgene in mice. Transgenic Res. 1996;5(1):13–23.

    CAS  PubMed  Google Scholar 

  133. Eckstein F, Lochmuller EM, Koller B, Wehr U, Weusten A, Rambeck W, Hoeflich A, Wolf E. Body composition, bone mass and microstructural analysis in GH-transgenic mice reveals that skeletal changes are specific to bone compartment and gender. Growth Horm IGF Res. 2002;12(2):116–25.

    CAS  PubMed  Google Scholar 

  134. Berryman DE, List EO, Coschigano KT, Behar K, Kim JK, Kopchick JJ. Comparing adiposity profiles in three mouse models with altered GH signaling. Growth Horm IGF Res. 2004;14(4):309–18.

    CAS  PubMed  Google Scholar 

  135. Berryman DE, List EO, Palmer AJ, Chung MY, Wright-Piekarski J, Lubbers E, O'Connor P, Okada S, Kopchick JJ. Two-year body composition analyses of long-lived GHR null mice. J Gerontol A Biol Sci. Med Sci. 2010;65(1):31–40.

    PubMed  Google Scholar 

  136. Li Y, Knapp JR, Kopchick JJ. Enlargement of interscapular brown adipose tissue in growth hormone antagonist transgenic and in growth hormone receptor gene-disrupted dwarf mice. Exp Biol Med (Maywood). 2003;228(2):207–15.

    CAS  Google Scholar 

  137. Flint DJ, Binart N, Boumard S, Kopchick JJ, Kelly P. Developmental aspects of adipose tissue in GH receptor and prolactin receptor gene disrupted mice: site-specific effects upon proliferation, differentiation and hormone sensitivity. J Endocrinol. 2006;191(1):101–11.

    CAS  PubMed  Google Scholar 

  138. Lubbers ER, List EO, Jara A, Sackman-Sala L, Cordoba-Chacon J, Gahete MD, Kineman RD, Boparai R, Bartke A, Kopchick JJ. et al. Adiponectin in mice with altered GH action: links to insulin sensitivity and longevity? J Endocrinol. 2013;216(3):363–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Masternak MM, Bartke A, Wang F, Spong A, Gesing A, Fang Y, Salmon AB, Hughes LF, Liberati T, Boparai R. et al. Metabolic effects of intra-abdominal fat in GHRKO mice. Aging Cell. 2012;11(1):73–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Kelder B, Berryman DE, Clark R, Li A, List EO, Kopchick JJ: CIDE-A gene expression is decreased in white adipose tissue of growth hormone receptor/binding protein gene disrupted mice and with high-fat feeding of normal mice. Growth Horm IGF Res 2007;17(4):346–351.

    CAS  PubMed  Google Scholar 

  141. Stout MB, Tchkonia T, Pirtskhalava T, Palmer AK, List EO, Berryman DE, Lubbers ER, Escande C, Spong A, Masternak MM, et al. Growth hormone action predicts age-related white adipose tissue dysfunction and senescent cell burden in mice. Aging. 2014;6(7):575–86.

    Google Scholar 

  142. Kirkland J, Tchkonia T, Pirtskhalava T, Giorgadze N, Bartke A, Masternak M, Miller R, Kopchick J, Berryman D, List E, et al. Age-related fat redistribution and cellular senescence are delayed in growth hormone/IGF-1 deficient mice. Obesity. 2010;18:S 53–53.

    Google Scholar 

  143. Householder LA, Troike K, Lubbers ER, Duran-Ortiz S, Jara A, List EO, Kopchick JJ, Berryman DE. Excess growth hormone promotes white adipose tissue fibrosis in a depotdependent manner in GH transgenic mice. Endocrine Rev. 2014;35:3, MON-0884

    Google Scholar 

  144. Wang Z, Masternak MM, Al-Regaiey KA, Bartke A. Adipocytokines and the regulation of lipid metabolism in growth hormone transgenic and calorie-restricted mice. Endocrinology. 2007;148(6):2845–53.

    CAS  PubMed  Google Scholar 

  145. Nilsson L, Binart N, Bohlooly YM, Bramnert M, Egecioglu E, Kindblom J, Kelly PA, Kopchick JJ, Ormandy CJ, Ling C, et al. Prolactin and growth hormone regulate adiponectin secretion and receptor expression in adipose tissue. Biochem Biophys Res Commun. 2005;331(4):1120–6.

    CAS  PubMed  Google Scholar 

  146. Vijeyta F. Effects of growth hormone on circulating resistin levels in mice. Ohio University Masters Thesis 2012:1–141.

    Google Scholar 

  147. Ip BC, Liu C, Smith DE, Ausman LM, Wang XD. High-refined-carbohydrate and high-fat diets induce comparable hepatic tumorigenesis in male mice. J Nutr. 2014;144(5):647–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Surwit RS, Feinglos MN, Rodin J, Sutherland A, Petro AE, Opara EC, Kuhn CM, Rebuffe-Scrive M. Differential effects of fat and sucrose on the development of obesity and diabetes in C57BL/6 J and A/J mice. Metabolism. 1995;44(5):645–51.

    CAS  PubMed  Google Scholar 

  149. Surwit RS, Kuhn CM, Cochrane C, McCubbin JA, Feinglos MN. Diet-induced type II diabetes in C57BL/6 J mice. Diabetes. 1988;37(9):1163–7.

    CAS  PubMed  Google Scholar 

  150. Surwit RS, Wang S, Petro AE, Sanchis D, Raimbault S, Ricquier D, Collins S. Diet-induced changes in uncoupling proteins in obesity-prone and obesity-resistant strains of mice. Proc Natl Acad Sci U S A. 1998;95(7):4061–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Zhao Y, Tan YS, Aupperlee MD, Langohr IM, Kirk EL, Troester MA, Schwartz RC, Haslam SZ. Pubertal high fat diet: effects on mammary cancer development. Breast Cancer Res. 2013;15(5):R100.

    PubMed Central  PubMed  Google Scholar 

  152. Smith DL, Jr., Nagy TR, Allison DB. Calorie restriction: what recent results suggest for the future of ageing research. Eur J Clin Invest. 2010;40(5):440–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Olsson B, Bohlooly YM, Fitzgerald SM, Frick F, Ljungberg A, Ahren B, Tornell J, Bergstrom G, Oscarsson J. Bovine growth hormone transgenic mice are resistant to diet-induced obesity but develop hyperphagia, dyslipidemia, and diabetes on a high-fat diet. Endocrinology. 2005;146(2):920–30.

    CAS  PubMed  Google Scholar 

  154. Robertson K, Kopchick JJ, Liu JL. Growth hormone receptor gene deficiency causes delayed insulin responsiveness in skeletal muscles without affecting compensatory islet cell overgrowth in obese mice. Am J Physiol Endocrinol Metab. 2006;291(3):E491–8.

    CAS  PubMed  Google Scholar 

  155. Bonkowski MS, Rocha JS, Masternak MM, Al Regaiey KA, Bartke A. Targeted disruption of growth hormone receptor interferes with the beneficial actions of calorie restriction. Proc Natl Acad Sci U S A. 2006;103(20):7901–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Bartke A, Wright JC, Mattison JA, Ingram DK, Miller RA, Roth GS. Extending the lifespan of long-lived mice. Nature. 2001;414(6862):412.

    CAS  PubMed  Google Scholar 

  157. Longo KA, Berryman DE, Kelder B, Charoenthongtrakul S, Distefano PS, Geddes BJ, Kopchick JJ. Daily energy balance in growth hormone receptor/binding protein (GHR -/-) gene-disrupted mice is achieved through an increase in dark-phase energy efficiency. Growth Horm IGF Res. 2010;20(1):73–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  158. Howard AD, Feighner SD, Cully DF, Arena JP, Liberator PA, Rosenblum CI, Hamelin M, Hreniuk DL, Palyha OC, Anderson J, et al. A receptor in pituitary and hypothalamus that functions in growth hormone release. Science. 1996;273(5277):974–7.

    CAS  PubMed  Google Scholar 

  159. Chen CY, Fujimiya M, Asakawa A, Chang FY, Cheng JT, Lee SD, Inui A. At the cutting edge: ghrelin gene products in food intake and gut motility. Neuroendocrinology. 2009;89(1):9–17.

    CAS  PubMed  Google Scholar 

  160. Nass R, Liu J, Hellmann P, Coschigano KT, Gaylinn B, Berryman DE, Kopchick JJ, Thorner MO. Chronic changes in peripheral growth hormone levels do not affect ghrelin stomach mRNA expression and serum ghrelin levels in three transgenic mouse models. J Neuroendocrinol. 2004;16(8):669–75.

    CAS  PubMed  Google Scholar 

  161. Westbrook R, Bonkowski MS, Strader AD, Bartke A. Alterations in oxygen consumption, respiratory quotient, and heat production in long-lived GHRKO and Ames dwarf mice, and short-lived bGH transgenic mice. J Gerontol A Biol Sci Med Sci. 2009;64(4):443–51.

    PubMed  Google Scholar 

  162. Hong SL, Longo KA, Gosney E, Kopchick JJ. Increased metabolic flexibility and complexity in a long-lived growth hormone insensitive mouse model. J Gerontol A Biol Sci Med Sci. 2014;69(3):274–81.

    CAS  PubMed  Google Scholar 

  163. Chhabra Y, Waters MJ, Brooks AJ. Role of the growth hormone-IGF-1 axis in cancer. Expert Rev Endocrinol Metab. 2011;6(1):71–84.

    CAS  Google Scholar 

  164. Miquet JG, Freund T, Martinez CS, Gonzalez L, Diaz ME, Micucci GP, Zotta E, Boparai RK, Bartke A, Turyn D, et al. Hepatocellular alterations and dysregulation of oncogenic pathways in the liver of transgenic mice overexpressing growth hormone. Cell Cycle. 2013;12(7):1042–57.

    CAS  PubMed Central  PubMed  Google Scholar 

  165. Quaife CJ, Mathews LS, Pinkert CA, Hammer RE, Brinster RL, Palmiter RD. Histopathology associated with elevated levels of growth hormone and insulin-like growth factor I in transgenic mice. Endocrinology. 1989;124(1):40–8.

    CAS  PubMed  Google Scholar 

  166. Cecim M, Bartke A, Yun JS, Wagner TE. Expression of human, but not bovine, growth hormone genes promotes development of mammary tumors in transgenic mice. Transgenics. 1994;1:431–7.

    CAS  Google Scholar 

  167. Ikeno Y, Hubbard GB, Lee S, Cortez LA, Lew CM, Webb CR, Berryman DE, List EO, Kopchick JJ, Bartke A. Reduced incidence and delayed occurrence of fatal neoplastic diseases in growth hormone receptor/binding protein knockout mice. J Gerontol A Biol Sci Med Sci. 2009;64(5):522–9.

    PubMed  Google Scholar 

  168. Zhang X, Mehta RG, Lantvit DD, Coschigano KT, Kopchick JJ, Green JE, Hedayat S, Christov KT, Ray VH, Unterman TG, et al. Inhibition of estrogen-independent mammary carcinogenesis by disruption of growth hormone signaling. Carcinogenesis. 2007;28(1):143–50.

    PubMed  Google Scholar 

  169. Wang Z, Prins GS, Coschigano KT, Kopchick JJ, Green JE, Ray VH, Hedayat S, Christov KT, Unterman TG, Swanson SM. Disruption of growth hormone signaling retards early stages of prostate carcinogenesis in the C3(1)/T antigen mouse. Endocrinology. 2005;146(12):5188–96.

    CAS  PubMed  Google Scholar 

  170. Pollak M, Blouin MJ, Zhang JC, Kopchick JJ. Reduced mammary gland carcinogenesis in transgenic mice expressing a growth hormone antagonist. Br J Cancer. 2001;85(3):428–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  171. Luque RM, Lin Q, Cordoba-Chacon J, Subbaiah PV, Buch T, Waisman A, Vankelecom H, Kineman RD. Metabolic impact of Adult-Onset, Isolated, Growth Hormone Deficiency (AOiGHD) due to destruction of pituitary somatotropes. PLoS One 2011;6(1):e15767.

    CAS  PubMed Central  PubMed  Google Scholar 

  172. List EO, Berryman DE, Funk K, Jara A, Kelder B, Wang F, Stout MB, Zhi X, Sun L, White TA, et al. Liver-specific GH receptor gene disrupted (LiGHRKO) mice have decreased endocrine IGF-1, increased local IGF-1 as well as altered body size, body composition and adipokine profiles. Endocrinology. 2014:en20132086.

    Google Scholar 

  173. Fan Y, Menon RK, Cohen P, Hwang D, Clemens T, Digirolamo DJ, Kopchick JJ, Leroith D, Trucco M, Sperling MA. Liver-specific Deletion of the Growth Hormone Receptor Reveals Essential Role of GH Signaling in Hepatic Lipid Metabolism. J Biol Chem. 2009.

    Google Scholar 

  174. Mavalli MD, DiGirolamo DJ, Fan Y, Riddle RC, Campbell KS, van Groen T, Frank SJ, Sperling MA, Esser KA, Bamman MM, et al. Distinct growth hormone receptor signaling modes regulate skeletal muscle development and insulin sensitivity in mice. J Clin Invest. 2010;120(11):4007–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  175. Vijayakumar A, Wu Y, Sun H, Li X, Jeddy Z, Liu C, Schwartz GJ, Yakar S, LeRoith D. Targeted loss of GHR signaling in mouse skeletal muscle protects against high-fat diet-induced metabolic deterioration. Diabetes. 2012;61(1):94–103.

    CAS  PubMed Central  PubMed  Google Scholar 

  176. Wu Y, Liu C, Sun H, Vijayakumar A, Giglou PR, Qiao R, Oppenheimer J, Yakar S, LeRoith D. Growth hormone receptor regulates beta cell hyperplasia and glucose-stimulated insulin secretion in obese mice. J Clin Invest. 2011;121(6):2422–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  177. List EO, Berryman DE, Funk K, Gosney ES, Jara A, Kelder B, Wang X, Kutz L, Troike K, Lozier N, et al. The role of GH in adipose tissue: lessons from adipose-specific GH receptor gene-disrupted mice. Mol Endocrinol. 2013;27(3):524–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  178. Lu C, Kumar PA, Sun J, Aggarwal A, Fan Y, Sperling MA, Lumeng CN, Menon RK. Targeted deletion of Growth Hormone (GH) receptor in macrophage reveals novel osteopontin-mediated effects of GH on glucose homeostasis and insulin sensitivity in diet-induced obesity. J Biol Chem. 2013;288(22):15725–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  179. Benencia F, Harshman S, Duran-Ortiz S, Lubbers ER, List EO, Householder L, Al-Naeeli M, Liang X, Welch L, Kopchick JJ, Berryman DE. Endocrinol. 2015;156(5):1794–803.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darlene E. Berryman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Berryman, D., Householder, L., Lesende, V., List, E., Kopchick, J. (2015). Living Large: What Mouse Models Reveal about Growth Hormone and Obesity. In: Berger, N. (eds) Murine Models, Energy Balance, and Cancer. Energy Balance and Cancer, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-16733-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16733-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16732-9

  • Online ISBN: 978-3-319-16733-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics