Skip to main content

Relevance of Circadian Rhythm in Cancer

  • Chapter
  • First Online:
Book cover Murine Models, Energy Balance, and Cancer

Part of the book series: Energy Balance and Cancer ((EBAC,volume 10))

Abstract

Circadian rhythms are patterns of behavior, physiology, and metabolism that occur within a period of approximately 24 h. These rhythms are generated endogenously, but synchronize to external cues, thus enabling organisms to beneficially align physiological processes to the inherently dynamic, yet predictable, seasonal changes in the day–night cycle. The cell autonomous circadian oscillator temporally coordinates cellular processes, including metabolism, proliferation, cell signaling, organelle function, proteostasis, and DNA damage repair to sustain cellular homeostasis. It is hypothesized that the circadian oscillators evolved as a “flight from light” mechanism to minimize UV damage to single stranded DNA by restricting DNA replication to the nighttime. Support for this hypothesis is accumulating with the recent observation that the circadian rhythm and cell cycle are intimately coupled to each other, so that specific phases of cell cycle occur at a defined phase of the circadian oscillator at single-cell level [1]. Furthermore, chronic circadian disruption perturbs cellular homeostasis and predisposes to cancer. Conversely, numerous cancer cell lines display severe circadian alterations, which likely contribute to aggressive proliferation of the tumor. Hence, it is becoming increasingly important to understand the relevance of circadian rhythm for optimizing fitness under natural conditions and its utility and adaptability in the modern world so that the knowledge can be better leveraged for the prevention and treatment of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feillet C, et al. Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle. Proc Natl Acad Sci U S A. 2014;111:9828–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Chen R, D’Alessandro M, Lee C. miRNAs are required for generating a time delay critical for the circadian oscillator. Curr Biol. 2013;23:1959–68.

    CAS  PubMed  Google Scholar 

  3. Spengler ML, Kuropatwinski KK, Schumer M, Antoch MP. A serine cluster mediates BMAL1-dependent CLOCK phosphorylation and degradation. Cell Cycle. 2009;8:4138–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Yin L, Wang J, Klein PS, Lazar MA. Nuclear receptor Rev-erbalpha is a critical lithiumsensitive component of the circadian clock. Science. 2006;311:1002–5.

    CAS  PubMed  Google Scholar 

  5. Reischl S, Kramer A. Kinases and phosphatases in the mammalian circadian clock. FEBS Lett. 2011;585:1393–9.

    CAS  PubMed  Google Scholar 

  6. Lee J, et al. Dual modification of BMAL1 by SUMO2/3 and ubiquitin promotes circadian activation of the CLOCK/BMAL1 complex. Mol Cell Biol. 2008;28:6056–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Cardone L, et al. Circadian clock control by SUMOylation of BMAL1. Science. 2005;309:1390–4.

    CAS  PubMed  Google Scholar 

  8. Asher G, et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell. 2008;134:317–28.

    CAS  PubMed  Google Scholar 

  9. Gossan NC, et al. The E3 ubiquitin ligase UBE3A is an integral component of the molecular circadian clock through regulating the BMAL1 transcription factor. Nucleic Acids Res. 2014;42:5765–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Panda S, Hogenesch JB, Kay SA. Circadian light input in plants, flies and mammals. Novartis Found Symp. 2003;253:73–82 (discussion 82–8, 102–9, 281–4).

    CAS  PubMed  Google Scholar 

  11. Panda S, Hogenesch JB, Kay SA. Circadian rhythms from flies to human. Nature. 2002;417:329–35.

    CAS  PubMed  Google Scholar 

  12. Hastings MH, Reddy AB, Maywood ES. A clockwork web: circadian timing in brain and periphery, in health and disease. Nat Rev Neurosci. 2003;4:649–61.

    CAS  PubMed  Google Scholar 

  13. Megdal SP, Kroenke CH, Laden F, Pukkala E, Schernhammer ES. Night work and breast cancer risk: a systematic review and meta-analysis. Eur J Cancer. 2005;41:2023–32.

    PubMed  Google Scholar 

  14. Hansen J, Lassen CF. Nested case-control study of night shift work and breast cancer risk among women in the Danish military. Occup Environ Med. 2012;69:551–6.

    PubMed  Google Scholar 

  15. Viswanathan AN, Hankinson SE, Schernhammer ES. Night shift work and the risk of endometrial cancer. Cancer Res. 2007;67:10618–22.

    CAS  PubMed  Google Scholar 

  16. Pauley SM. Lighting for the human circadian clock: recent research indicates that lighting has become a public health issue. Med Hypotheses. 2004;63:588–96.

    PubMed  Google Scholar 

  17. Schernhammer ES, et al. Night-shift work and risk of colorectal cancer in the nurses’ health study. J Natl Cancer Inst. 2003;95:825–8.

    PubMed  Google Scholar 

  18. Haus EL, Smolensky MH. Shift work and cancer risk: potential mechanistic roles of circadian disruption, light at night, and sleep deprivation. Sleep Med Rev. 2013;17:273–84.

    PubMed  Google Scholar 

  19. Conlon M, Lightfoot N, Kreiger N. Rotating shift work and risk of prostate cancer. Epidemiology. 2007;18:182–3.

    PubMed  Google Scholar 

  20. Kubo T, et al. Industry-based retrospective cohort study of the risk of prostate cancer among rotating-shift workers. Int J Urol. 2011;18:206–11.

    PubMed  Google Scholar 

  21. Buja A, et al. Cancer incidence among male military and civil pilots and flight attendants: an analysis on published data. Toxicol Ind Health. 2005;21:273–82.

    PubMed  Google Scholar 

  22. Hahn RA. Profound bilateral blindness and the incidence of breast cancer. Epidemiology. 1991;2:208–10.

    CAS  PubMed  Google Scholar 

  23. Mormont MC, et al. Marked 24-h rest/activity rhythms are associated with better quality of life, better response, and longer survival in patients with metastatic colorectal cancer and good performance status. Clin Cancer Res. 2000;6:3038–45.

    CAS  PubMed  Google Scholar 

  24. Chu LW, et al. Variants in circadian genes and prostate cancer risk: a population-based study in China. Prostate Cancer Prostatic Dis. 2008;11:342–8.

    CAS  PubMed  Google Scholar 

  25. Couto P, et al. Association between CLOCK, PER3 and CCRN4 L with nonsmall cell lung cancer in Brazilian patients. Mol Med Rep. 2014;10:435–40.

    CAS  PubMed  Google Scholar 

  26. Hoffman AE, et al. The core circadian gene Cryptochrome 2 influences breast cancer risk, possibly by mediating hormone signaling. Cancer Prev Res (Phila). 2010;3:539–48.

    CAS  Google Scholar 

  27. Zhu Y, et al. Ala394Thr polymorphism in the clock gene NPAS2: a circadian modifier for the risk of non-Hodgkin’s lymphoma. Int J Cancer. 2007;120:432–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Zhao B, et al. A functional polymorphism in PER3 gene is associated with prognosis in hepatocellular carcinoma. Liver Int. 2012;32:1451–9.

    CAS  PubMed  Google Scholar 

  29. Zhou F, et al. Functional polymorphisms of circadian positive feedback regulation genes and clinical outcome of Chinese patients with resected colorectal cancer. Cancer. 2012;118:937–46.

    CAS  PubMed  Google Scholar 

  30. Kettner NM, Katchy CA, Fu L. Circadian gene variants in cancer. Ann Med. 2014;46:208–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Hu ML, et al. Deregulated expression of circadian clock genes in gastric cancer. BMC Gastroenterol. 2014;14:67.

    PubMed Central  PubMed  Google Scholar 

  32. Yeh CM, et al. Epigenetic silencing of ARNTL, a circadian gene and potential tumor suppressor in ovarian cancer. Int J Oncol. 2014;45:2101–7.

    CAS  PubMed  Google Scholar 

  33. Rana S, et al. Deregulated expression of circadian clock and clock-controlled cell cycle genes in chronic lymphocytic leukemia. Mol Biol Rep. 2014;41:95–103.

    CAS  PubMed  Google Scholar 

  34. Mazzoccoli G, et al. Clock gene expression levels and relationship with clinical and pathological features in colorectal cancer patients. Chronobiol Int. 2011;28:841–51.

    CAS  PubMed  Google Scholar 

  35. Yu H, et al. Cryptochrome 1 overexpression correlates with tumor progression and poor prognosis in patients with colorectal cancer. PLoS One. 2013;8:e61679.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Wang L, et al. hClock gene expression in human colorectal carcinoma. Mol Med Rep. 2013;8:1017–22.

    CAS  PubMed  Google Scholar 

  37. Antoch MP, et al. Disruption of the circadian clock due to the Clock mutation has discrete effects on aging and carcinogenesis. Cell Cycle. 2008;7:1197–204.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Ozturk N, Lee JH, Gaddameedhi S, Sancar A Loss of cryptochrome reduces cancer risk in p53 mutant mice. Proc Natl Acad Sci U S A. 2009;106:2841–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Jensen LD, Cao Y. Clock controls angiogenesis. Cell Cycle. 2013;12:405–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Wood PA, et al. Period 2 mutation accelerates ApcMin/+ tumorigenesis. Mol Cancer Res. 2008;6:1786–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Yang X, et al. The circadian clock gene Per1 suppresses cancer cell proliferation and tumor growth at specific times of day. Chronobiol Int. 2009;26:1323–39.

    CAS  PubMed  Google Scholar 

  42. Gu X, et al. The circadian mutation PER2(S662G) is linked to cell cycle progression and tumorigenesis. Cell Death Differ. 2012;19:397–405.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Lee S, Donehower LA, Herron AJ, Moore DD, Fu L. Disrupting circadian homeostasis of sympathetic signaling promotes tumor development in mice. PLoS One. 2010;5:e10995.

    PubMed Central  PubMed  Google Scholar 

  44. Filipski E, et al. Host circadian clock as a control point in tumor progression. J Natl Cancer Inst. 2002;94:690–7.

    PubMed  Google Scholar 

  45. Filipski E, et al. Effects of light and food schedules on liver and tumor molecular clocks in mice. J Natl Cancer Inst. 2005;97:507–17.

    CAS  PubMed  Google Scholar 

  46. Wu M, et al. Experimental chronic jet lag promotes growth and lung metastasis of Lewis lung carcinoma in C57BL/6 mice. Oncol Rep. 2012;27:1417–28.

    CAS  PubMed  Google Scholar 

  47. Anisimov VN, Vinogradova IA, Panchenko AV, Popovich IG, Zabezhinski MA. Light-atnight-induced circadian disruption, cancer and aging. Curr Aging Sci. 2012;5:170–7.

    PubMed  Google Scholar 

  48. Lee JH, Sancar A. Regulation of apoptosis by the circadian clock through NF-kappaB signaling. Proc Natl Acad Sci U S A. 2011;108:12036–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Zmrzljak UP, Rozman D. Circadian regulation of the hepatic endobiotic and xenobitoic detoxification pathways: the time matters. Chem Res Toxicol. 2012;25:811–24.

    CAS  PubMed  Google Scholar 

  50. Savvidis C, Koutsilieris M. Circadian rhythm disruption in cancer biology. Mol Med. 2012;18:1249–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Everett LJ, Lazar MA. Nuclear receptor Rev-erbα: up, down, and all around. Trends Endocrinol Metab. 2014;25(11):586–92.

    CAS  PubMed  Google Scholar 

  52. Pilgrim C, Erb W, Maurer W. Diurnal fluctuations in the numbers of DNA synthesizing nuclei in various mouse tissues. Nature. 1963;199:863.

    CAS  PubMed  Google Scholar 

  53. Gomes JR, et al. Circadian variation of the cell proliferation in the jejunal epithelium of rats at weaning phase. Cell Prolif. 2005;38:147–52.

    CAS  PubMed  Google Scholar 

  54. Scheving LA. Biological clocks and the digestive system. Gastroenterology. 2000;119:536–49

    CAS  PubMed  Google Scholar 

  55. Smaaland R. Circadian rhythm of cell division. Prog Cell Cycle Res. 1996;2:241–66.

    CAS  PubMed  Google Scholar 

  56. Bjarnason GA, Jordan R. Circadian variation of cell proliferation and cell cycle protein expression in man: clinical implications. Prog Cell Cycle Res. 2000;4:193–206.

    CAS  PubMed  Google Scholar 

  57. Matsuo T, et al. Control mechanism of the circadian clock for timing of cell division in vivo. Science. 2003;302:255–9.

    CAS  PubMed  Google Scholar 

  58. Gery S, et al. The circadian gene per1 plays an important role in cell growth and DNA damage control in human cancer cells. Mol Cell. 2006;22:375–82.

    CAS  PubMed  Google Scholar 

  59. Unsal-Kacmaz K, Mullen TE, Kaufmann WK, Sancar A. Coupling of human circadian and cell cycles by the timeless protein. Mol Cell Biol. 2005;25:3109–16.

    PubMed Central  PubMed  Google Scholar 

  60. Mullenders J, Fabius AW, Madiredjo M, Bernards R, Beijersbergen RL. A large scale shRNA barcode screen identifies the circadian clock component ARNTL as putative regulator of the p53 tumor suppressor pathway. PLoS One. 2009;4:e4798.

    PubMed Central  PubMed  Google Scholar 

  61. Cotta-Ramusino C, et al. A DNA damage response screen identifies RHINO, a 9-1-1 and TopBP1 interacting protein required for ATR signaling. Science. 2011;332:1313–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Gachon F, Olela FF, Schaad O, Descombes P, Schibler U. The circadian PAR-domain basic leucine zipper transcription factors DBP, TEF, and HLF modulate basal and inducible xenobiotic detoxification. Cell Metab. 2006;4:25–36.

    CAS  PubMed  Google Scholar 

  63. Reiter RJ. Melatonin: the chemical expression of darkness. Mol Cell Endocrinol. 1991;79:C153–8.

    CAS  PubMed  Google Scholar 

  64. Ng TB, Wong CM. Effects of pineal indoles and arginine vasotocin on lipolysis and lipogenesis in isolated adipocytes. J Pineal Res. 1986;3:55–66.

    CAS  PubMed  Google Scholar 

  65. Cipolla-Neto J, Amaral FG, Afeche SC, Tan DX, Reiter RJ. Melatonin, energy metabolism, and obesity: a review. J Pineal Res. 2014;56:371–81.

    CAS  PubMed  Google Scholar 

  66. Cutando A, Lopez-Valverde A, Arias-Santiago S, DE Vicente J, DE Diego RG. Role of melatonin in cancer treatment. Anticancer Res. 2012;32:2747–53.

    CAS  PubMed  Google Scholar 

  67. Feychting M, Osterlund B, Ahlbom A. Reduced cancer incidence among the blind. Epidemiology. 1998;9:490–4.

    CAS  PubMed  Google Scholar 

  68. Dickmeis T, Foulkes NS. Glucocorticoids and circadian clock control of cell proliferation: at the interface between three dynamic systems. Mol Cell Endocrinol. 2011;331:11–22.

    CAS  PubMed  Google Scholar 

  69. Son GH, Chung S, Kim K. The adrenal peripheral clock: glucocorticoid and the circadian timing system. Front Neuroendocrinol. 2011;32:451–65.

    CAS  PubMed  Google Scholar 

  70. Kalsbeek A, et al. Circadian rhythms in the hypothalamo-pituitary-adrenal (HPA) axis. Mol Cell Endocrinol. 2012;349:20–9.

    CAS  PubMed  Google Scholar 

  71. Kino T, Chrousos GP. Circadian CLOCK-mediated regulation of target-tissue sensitivity to glucocorticoids: implications for cardiometabolic diseases. Endocr Dev. 2011;20:116–26.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Greene MW. Circadian rhythms and tumor growth. Cancer Lett. 2012;318:115–23.

    CAS  PubMed  Google Scholar 

  73. Spiga F, Walker JJ, Terry JR, Lightman SL. HPA axis-rhythms. Compr Physiol. 2014;4:1273–98.

    PubMed  Google Scholar 

  74. Herr I, Gassler N, Friess H, Buchler MW. Regulation of differential pro- and anti-apoptotic signaling by glucocorticoids. Apoptosis. 2007;12:271–91.

    CAS  PubMed  Google Scholar 

  75. Humbel RE. Insulin-like growth factors I and II. Eur J Biochem. 1990;190:445–62.

    CAS  PubMed  Google Scholar 

  76. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med. 2003;348:1625–38.

    PubMed  Google Scholar 

  77. Pollak M. The insulin and insulin-like growth factor receptor family in neoplasia: an update. Nat Rev Cancer. 2012;12:159–69.

    CAS  PubMed  Google Scholar 

  78. Haus E, Dumitriu L, Nicolau GY, Bologa S, Sackett-Lundeen L. Circadian rhythms of basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), insulin-like growth factor-1 (IGF-1), insulin-like growth factor binding protein-3 (IGFBP-3), cortisol, and melatonin in women with breast cancer. Chronobiol Int. 2001;18:709–27.

    CAS  PubMed  Google Scholar 

  79. Mejean L, et al. Circadian and ultradian rhythms in blood glucose and plasma insulin of healthy adults. Chronobiol Int. 1988;5:227–36.

    CAS  PubMed  Google Scholar 

  80. Haus E. Chronobiology in the endocrine system. Adv Drug Deliv Rev. 2007;59:985–1014.

    CAS  PubMed  Google Scholar 

  81. Gamble KL, Berry R, Frank SJ, Young ME. Circadian clock control of endocrine factors. Nat Rev Endocrinol. 2014;10:466–75.

    PubMed  Google Scholar 

  82. Balsalobre A, Marcacci L, Schibler U. Multiple signaling pathways elicit circadian gene expression in cultured Rat-1 fibroblasts. Curr Biol. 2000;10:1291–4.

    CAS  PubMed  Google Scholar 

  83. Kohsaka A, et al. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab. 2007;6:414–21.

    CAS  PubMed  Google Scholar 

  84. Monk TH, Buysse DJ. Exposure to shift work as a risk factor for diabetes. J Biol Rhythms. 2013;28:356–9.

    PubMed Central  PubMed  Google Scholar 

  85. McFadden E, Jones ME, Schoemaker MJ, Ashworth A, Swerdlow AJ. The relationship between obesity and exposure to light at night: cross-sectional analyses of over 100,000 women in the breakthrough generations study. Am J Epidemiol. 2014;180:245–50.

    PubMed  Google Scholar 

  86. Kalsbeek A, la Fleur S, Fliers E. Circadian control of glucose metabolism. Mol Metab. 2014;3:372–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Suwazono Y, et al. A longitudinal study on the effect of shift work on weight gain in male Japanese workers. Obesity (Silver Spring). 2008;16:1887–93.

    Google Scholar 

  88. Kroenke CH, et al. Work characteristics and incidence of type 2 diabetes in women. Am J Epidemiol. 2007;165:175–83.

    PubMed  Google Scholar 

  89. Scheer FA, Hilton MF, Mantzoros CS, Shea SA. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci U S A. 2009;106:4453–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Gangwisch JE. Epidemiological evidence for the links between sleep, circadian rhythms and metabolism. Obes Rev. 2009;10(Suppl 2):37–45.

    PubMed Central  PubMed  Google Scholar 

  91. Meisinger C, Heier M, Loewel H, Study MKAC. Sleep disturbance as a predictor of type 2 diabetes mellitus in men and women from the general population. Diabetologia. 2005;48:235–41.

    CAS  PubMed  Google Scholar 

  92. Beihl DA, Liese AD, Haffner SM. Sleep duration as a risk factor for incident type 2 diabetes in a multiethnic cohort. Ann Epidemiol. 2009;19:351–7.

    PubMed  Google Scholar 

  93. Kelly MA, et al. Circadian gene variants and susceptibility to type 2 diabetes: a pilot study. PLoS One. 2012;7:e32670.

    PubMed Central  PubMed  Google Scholar 

  94. Ruano EG, Canivell S, Vieira E. REV-ERB ALPHA polymorphism is associated with obesity in the Spanish obese male population. PLoS One. 2014;9:e104065.

    PubMed Central  PubMed  Google Scholar 

  95. Woon PY, et al. Aryl hydrocarbon receptor nuclear translocator-like (BMAL1) is associated with susceptibility to hypertension and type 2 diabetes. Proc Natl Acad Sci U S A. 2007;104:14412–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Marcheva B, et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature. 2010;466:627–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Lamia KA, Storch KF, Weitz CJ. Physiological significance of a peripheral tissue circadian clock. Proc Natl Acad Sci U S A. 2008;105:15172–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Rudic RD, et al. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol. 2004;2:e377.

    PubMed Central  PubMed  Google Scholar 

  99. Turek FW, et al. Obesity and metabolic syndrome in circadian Clock mutant mice. Science. 2005;308:1043–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Barclay JL, et al. High-fat diet-induced hyperinsulinemia and tissue-specific insulin resistance in Cry-deficient mice. Am J Physiol Endocrinol Metab. 2013;304:E1053–63.

    CAS  PubMed  Google Scholar 

  101. Griebel G, Ravinet-Trillou C, Beeske S, Avenet P, Pichat P. Mice deficient in cryptochrome 1 (cry1 (‒/‒)) exhibit resistance to obesity induced by a high-fat diet. Front Endocrinol (Lausanne). 2014;5:49.

    Google Scholar 

  102. Carvas JM, et al. Period2 gene mutant mice show compromised insulin-mediated endothelial nitric oxide release and altered glucose homeostasis. Front Physiol. 2012;3:337.

    PubMed Central  PubMed  Google Scholar 

  103. Le Martelot G, et al. REV-ERBalpha participates in circadian SREBP signaling and bile acid homeostasis. PLoS Biol. 2009;7:e1000181.

    PubMed Central  PubMed  Google Scholar 

  104. Cho H, et al. Regulation of circadian behaviour and metabolism by REV-ERB-alpha and REV-ERB-beta. Nature. 2012;485:123–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Liu Z, et al. PER1 phosphorylation specifies feeding rhythm in mice. Cell Rep. 2014;7:1509–20.

    CAS  PubMed  Google Scholar 

  106. Hughes ME, et al. Harmonics of circadian gene transcription in mammals. PLoS Genet. 2009;5:e1000442.

    PubMed Central  PubMed  Google Scholar 

  107. Panda S, et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell. 2002;109:307–20.

    CAS  PubMed  Google Scholar 

  108. Yang X, et al. Nuclear receptor expression links the circadian clock to metabolism. Cell. 2006;126:801–10.

    CAS  PubMed  Google Scholar 

  109. Yang X, Lamia K, Evans R. Nuclear receptors, metabolism, and the circadian clock. Cold Spring Harb Symp Quant Biol. 2007;72:387–94.

    CAS  PubMed  Google Scholar 

  110. Masri S, Zocchi L, Katada S, Mora E, Sassone-Corsi P. The circadian clock transcriptional complex: metabolic feedback intersects with epigenetic control. Ann N Y Acad Sci. 2012;1264:103–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Masri S, et al. Partitioning circadian transcription by SIRT6 leads to segregated control of cellular metabolism. Cell. 2014;158:659–72.

    CAS  PubMed  Google Scholar 

  112. Paschos GK, et al. Obesity in mice with adipocyte-specific deletion of clock component Arntl. Nat Med. 2012;18:1768–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Shostak A, Meyer-Kovac J, Oster H. Circadian regulation of lipid mobilization in white adipose tissues. Diabetes. 2013;62:2195–203.

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Shimba S, et al. Brain and muscle Arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis. Proc Natl Acad Sci U S A. 2005;102:12071–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Gerhart-Hines Z, et al. The nuclear receptor Rev-erbalpha controls circadian thermogenic plasticity. Nature. 2013;503:410–3.

    CAS  PubMed  Google Scholar 

  116. Chappuis S, et al. Role of the circadian clock gene Per2 in adaptation to cold temperature. Mol Metab. 2013;2:184–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  117. McCarthy JJ, et al. Identification of the circadian transcriptome in adult mouse skeletal muscle. Physiol Genomics. 2007;31:86–95.

    CAS  PubMed  Google Scholar 

  118. Zhang E, et al. Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis. Nat Med. 2010;16:1152–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Lamia KA, et al. Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature. 2011;480:552–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Asher G, Schibler U. Crosstalk between components of circadian and metabolic cycles in mammals. Cell Metab. 2011;13:125–37.

    CAS  PubMed  Google Scholar 

  121. Ramsey KM, et al. Circadian clock feedback cycle through NAMPT-mediated NAD + biosynthesis. Science. 2009;324:651–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science. 2009;324:654–7.

    CAS  PubMed  Google Scholar 

  123. Imai S, Guarente L. NAD+ and sirtuins in aging and disease. Trends Cell Biol. 2014;24:464–71.

    CAS  PubMed  Google Scholar 

  124. Houtkooper RH, Pirinen E, Auwerx J. Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol. 2012;13:225–38.

    CAS  PubMed  Google Scholar 

  125. Arble D, Bass J, Laposky A, Vitaterna M, Turek F. Circadian timing of food intake contributes to weight gain. Obesity (Silver Spring, Md.). 2009;17:2100–2.

    Google Scholar 

  126. Hatori M, et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 2012;15:848–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Sherman H, et al. Timed high-fat diet resets circadian metabolism and prevents obesity. FASEB J. 2012;26:3493–502.

    CAS  PubMed  Google Scholar 

  128. Vollmers C, et al. Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression. Proc Natl Acad Sci U S A. 2009;106:21453–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Oishi K, Uchida D, Itoh N. Low-carbohydrate, high-protein diet affects rhythmic expression of gluconeogenic regulatory and circadian clock genes in mouse peripheral tissues. Chronobiol Int. 2012;29:799–809.

    CAS  PubMed  Google Scholar 

  130. Oike H, Nagai K, Fukushima T, Ishida N, Kobori M. High-salt diet advances molecular circadian rhythms in mouse peripheral tissues. Biochem Biophys Res Commun. 2010;402:7–13.

    CAS  PubMed  Google Scholar 

  131. Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11:85–95.

    CAS  PubMed  Google Scholar 

  132. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    CAS  PubMed  Google Scholar 

  133. Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer. 2011;11:325–37.

    CAS  PubMed  Google Scholar 

  134. Denko NC. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer. 2008;8:705–13.

    CAS  PubMed  Google Scholar 

  135. Hogenesch JB, et al. The basic helix-loop-helix-PAS protein MOP9 is a brain-specific heterodimeric partner of circadian and hypoxia factors. J Neurosci. 2000;20:RC83.

    CAS  PubMed  Google Scholar 

  136. Hogenesch JB, Gu YZ, Jain S, Bradfield CA. The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc Natl Acad Sci U S A. 1998;95:5474–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Szablewski L. Expression of glucose transporters in cancers. Biochim Biophys Acta. 2013;1835:164–9.

    CAS  PubMed  Google Scholar 

  138. Salani B, et al. Metformin, cancer and glucose metabolism. Endocr Relat Cancer. 2014;21:R461–71.

    PubMed  Google Scholar 

  139. Ros S, Schulze A. Balancing glycolytic flux: the role of 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatases in cancer metabolism. Cancer Metab. 2013;1:8.

    PubMed Central  PubMed  Google Scholar 

  140. Pacha J, Sumova A. Circadian regulation of epithelial functions in the intestine. Acta Physiol (Oxf). 2013;208:11–24.

    CAS  Google Scholar 

Download references

Acknowledgments

KD and LD are supported in part by NIH grant numbers P20RR021940 and P20GM103549. Research in SP’s lab is supported by NIH grant numbers DK091618, EY016807, P30 CA014195, and American Federation for Aging Research grant number M14322.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satchidananda Panda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

DiTacchio, L., DiTacchio, K., Panda, S. (2015). Relevance of Circadian Rhythm in Cancer. In: Berger, N. (eds) Murine Models, Energy Balance, and Cancer. Energy Balance and Cancer, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-16733-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16733-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16732-9

  • Online ISBN: 978-3-319-16733-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics