Skip to main content

Anisotropic Fundamental Solutions for Linear Elasticity and Heat Conduction Problems Based on a Crystalline Class Hierarchy Governed Decomposition Method

  • Conference paper
Integral Methods in Science and Engineering

Abstract

A recursive methodology, based on a constitutive decomposition procedure, is developed to determine anisotropic fundamental solutions, aiming their use on numerical methods such as the Boundary Element Method. Convergence requirements and some important properties of these solutions, as non-degeneracy, are presented. Only theoretical aspects are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adomian, G.: Solving Frontier Problems of Physics: The Decomposition Method. Kluwer Academic Publ., Dordrecht (1994)

    Book  MATH  Google Scholar 

  2. Browaeys, J. T., Chevrot, S.: Decomposition of the Elastic Tensor and Geophysical Applications. Geophys. J. Internat., 159, 667–678 (2004).

    Article  Google Scholar 

  3. Buroni, F. C., Marczak, R. J., Denda, M., Saez, A.: A Formalism for Anisotropic Heat Transfer Phenomena: Foundations and Green’s Functions. Internat. J. Heat Mass Transf., 75, 399–409 (2014)

    Article  Google Scholar 

  4. Buroni, F. C., Ortiz, J. E., Saez, A.: Multiple Pole Residue Approach dor 3D BEM Analysis of Mathematical Degenerate and Non-Degenerate Materials. Internat. J. Numer. Methods Engrg., 86, 1125–1143 (2010)

    Article  MathSciNet  Google Scholar 

  5. Cheng, Z. -Q., Reddy, J. N.: Octet Formalism for Kirchhoff Anisotropic Plates. R. Soc. London Proc. Ser. A, 458, 1499–1517 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chadwick, P., Vianello, M., Cowin, S. C.: A New Proof that the Number of Linear Elastic Symmetries is Eight. J. Mech. Phys. Solids, 49, 2471–2492 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cowin, S. C., Mehrabadi, M. M.: Anisotropic Symmetries of Linear Elasticity. Appl. Mech. Rev., 48, 247–285 (1995)

    Article  Google Scholar 

  8. Liou, J. Y., Sung, J. C.: On the Generalized Barnett-Lothe Tensors for Monoclinic Piezoeletric Materials. Internat. J. Solids Struct., 44, 5208–5221 (2007)

    Article  MATH  Google Scholar 

  9. Marczak, R. J., Denda, M.: New Derivations of the Fundamental Solution for Heat Conduction Problems in Three-Dimensional General Anisotropic Media. Internat. J. Heat Mass Transf., 54, 3605–3612 (2011).

    Article  MATH  Google Scholar 

  10. Nakamura, G., Tanuma, K.: A Formula for the Fundamental Solution of Anisotropic Elasticity. Quart. J. Mech. Appl. Math., 50, 179–194 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Paiva, W. P., Sollero, P., Albuquerque, E. L.: Analysis of the Fundamental Solution for Anisotropic Thin Plates. 15th ASCE Engrg. Mech. Conf.. New York (2002)

    Google Scholar 

  12. Shi, G., Bezine, G.: A General Boundary Integral Formulation for Anisotropic Plate Bending. J. Compos. Mater., 22, 694–716 (1988)

    Article  Google Scholar 

  13. Smith, G. F., Smith, M. M., Rivlin, R. S.: Integrity Bases for a Symmetric Tensor and a Vector - The Crystal Classes. Arch. Ration. Mech. Anal., 12, 93–133 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  14. Távara, L., Ortiz, J. E., Mantič, V., París, F.: Unique Real-Variable Expressions of Displacement and Traction Fundamental Solutions Covering all Transversely Isotropic Elastic Materials for 3D BEM. Internat. J. Numer. Methods Engrg., 74, 776–798 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ting, T. C.: Anisotropic Elasticity: Theory and Applications. Oxford Univ. Press, Inc., New York (1996).

    MATH  Google Scholar 

  16. Tonon, F., Pan, E., Amadei, B.: Green’s Functions and Boundary Element Method Formulation for 3D Anisotropic Media. Comput. & Struct., 79, 469–482 (2001)

    Article  Google Scholar 

  17. Tu, Y. -O.: The Decomposition of an Anisotropic Elastic Tensor. Acta Crystallogr. Sect. A, 24, 273–282 (1968)

    Article  Google Scholar 

  18. Wang, C. -Y.: Elastic Fields Produced by a Point Source in Solids of General Anisotropy. J. Engrg. Math., 32, 41–52 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Lisboa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Lisboa, T.V., Marczak, R.J., Bodmann, B.E.J., Vilhena, M.T.M.B. (2015). Anisotropic Fundamental Solutions for Linear Elasticity and Heat Conduction Problems Based on a Crystalline Class Hierarchy Governed Decomposition Method. In: Constanda, C., Kirsch, A. (eds) Integral Methods in Science and Engineering. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-16727-5_31

Download citation

Publish with us

Policies and ethics