Skip to main content

On the Spectrum of Volume Integral Operators in Acoustic Scattering

  • Conference paper
Integral Methods in Science and Engineering

Abstract

Volume integral equations have been used as theoretical and numerical tools in scattering theory for a long time. The basic idea of the VIE method in scattering by a penetrable object is to consider the effect of the scatterer as a perturbation of a whole-space constant coefficient problem and to solve the latter by convolution with the whole-space fundamental solution. In acoustic and electromagnetic scattering, this results in strongly singular integral equations that have a non-trivial essential spectrum, in general. Using techniques developed for the case of electromagnetic scattering (see the recent note by M. Costabel, E. Darrigrand and H. Sakly, The essential spectrum of the volume integral operator in electromagnetic scattering by a homogeneous body. Comptes Rendus Mathématique, 350, 193–197 (2012)), we determine the essential spectrum, hence the well-posedness in the sense of Fredholm, of the volume integral equation in acoustic scattering. It turns out that the question can be reduced to the study of the classical double layer potential boundary integral operator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bonnet-Ben Dhia, A.-S., Chesnel, L., Ciarlet, P. Jr.: T-coercivity for scalar interface problems between dielectrics and metamaterials. ESAIM Math. Model. Numer. Anal. 46(6), 1363–1387 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  2. Chesnel, L.: Investigation of some transmission problems with sign changing coefficients, Application to metamaterials. PhD thesis, École Polytechnique (2012)

    Google Scholar 

  3. Colton, D., Kress, R.: Integral equation methods in scattering theory. Pure and Applied Mathematics (New York). John Wiley & Sons Inc., New York (1983)

    Google Scholar 

  4. Colton, D., Kress, R.: Inverse acoustic and electromagnetic scattering theory, volume 93 of Applied Mathematical Sciences. Springer-Verlag, Berlin, second edition (1998)

    Book  Google Scholar 

  5. Costabel, M.: Boundary integral operators on Lipschitz domains, elementary results. SIAM J. Math. Anal. 19(3), 613–626 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  6. Costabel, M.: Some historical remarks on the positivity of boundary integral operators. In: Boundary element analysis, volume 29 of Lect. Notes Appl. Comput. Mech., pp. 1–27. Springer, Berlin (2007)

    Google Scholar 

  7. Costabel, M., Darrigrand, E., Koné, E.-H.: Volume and surface integral equations for electromagnetic scattering by a dielectric body. J. Comput. Appl. Math. 234(6), 1817–1825 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Costabel, M., Darrigrand, E., Sakly, H.: The essential spectrum of the volume integral operator in electromagnetic scattering by a homogeneous body. Comptes Rendus Mathématique, 350, 193–197 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Costabel, M., Stephan, E.: A direct boundary integral equation method for transmission problems. J. Math. Anal. Appl. 106(2), 367–413 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  10. Draine, B. T., Flatau, P. J.: Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Am. A 11(4), 1491–1499 (1994)

    Article  Google Scholar 

  11. Friedman, M. J., Pasciak, J. E.: Spectral properties for the magnetization integral operator. Math. Comp. 43(168), 447–453 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kirsch, A.: An integral equation approach and the interior transmission problem for Maxwell’s equations. Inverse Probl. Imaging 1(1), 159–179 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kirsch, A., Lechleiter, A.: The operator equations of Lippmann-Schwinger type for acoustic and electromagnetic scattering problems in L 2. Appl. Anal. 88(6), 807–830 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Purcell, E. M., Pennypacker, C. R.: Scattering and adsorption of light by nonspherical dielectric grains. Astrophys. J. 186, 705–714 (1973)

    Article  Google Scholar 

  15. Sakly, H.: Opérateur intégral volumique en théorie de diffraction électromagnétique. PhD thesis, Université de Rennes 1 (2014)

    Google Scholar 

  16. Yurkin, M. A., Hoekstra, A. G.: The discrete dipole approximation, an overview and recent developments. J. Quant. Spectrosc. Radiat. Transf. 106(1), 558–589 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Costabel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Costabel, M. (2015). On the Spectrum of Volume Integral Operators in Acoustic Scattering. In: Constanda, C., Kirsch, A. (eds) Integral Methods in Science and Engineering. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-16727-5_11

Download citation

Publish with us

Policies and ethics