Skip to main content

Part of the book series: Undergraduate Texts in Mathematics ((UTM))

  • 19k Accesses

Abstract

This chapter will study systematic methods for eliminating variables from systems of polynomial equations. The basic strategy of elimination theory will be given in two main theorems: the Elimination Theorem and the Extension Theorem. We will prove these results using Gröbner bases and the classic theory of resultants.

The original version of this chapter was revised. A correction to this chapter is available at https://doi.org/10.1007/978-3-319-16721-3_11

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 49.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • J. Abbott, A. Bigatti, G. Lagorio, CoCoA-5: A System for Doing Computations in Commutative Algebra (2014), available at http://cocoa.dima.unige.it

  • W. Adams, P. Loustaunau, An Introduction to Gröbner Bases. Graduate Studies in Mathematics, vol. 3 (AMS, Providence, 1994)

    Google Scholar 

  • C. Aholt, B. Sturmfels, R. Thomas, A Hilbert scheme in computer vision. Can. J. Math. 65, 961–988 (2013)

    MathSciNet  MATH  Google Scholar 

  • D. Anderson, R. Goldman, T. Sederberg, Implicit representation of parametric curves and surfaces. Comput. Vis. Graph. Image Des. 28, 72–84 (1984a)

    Google Scholar 

  • D. Anderson, R. Goldman, T. Sederberg, Vector elimination: a technique for the implicitization, inversion and intersection of planar parametric rational polynomial curves. Comput. Aided Geom. Des. 1, 327–356 (1984b)

    Article  Google Scholar 

  • E. Arnold, S. Lucas, L. Taalman, Gröbner basis representations of sudoku. Coll. Math. J. 41, 101–112 (2010)

    Article  MathSciNet  Google Scholar 

  • M. Aschenbrenner, Ideal membership in polynomial rings over the integers. J. Am. Math. Soc. 17, 407–441 (2004)

    Google Scholar 

  • M.F. Atiyah, I.G. MacDonald, Introduction to Commutative Algebra (Addison-Wesley, Reading, MA, 1969)

    Google Scholar 

  • P. Aubry, D. Lazard, M. Moreno Maza, On the theories of triangular sets. J. Symb. Comput. 28, 105–124 (1999)

    Article  MathSciNet  Google Scholar 

  • J. Baillieul et al., Robotics. In: Proceedings of Symposia in Applied Mathematics, vol. 41 (American Mathematical Society, Providence, Rhode Island, 1990)

    Google Scholar 

  • A.A. Ball, The Parametric Representation of Curves and Surfaces Using Rational Polynomial Functions, in The Mathematics of Surfaces, II, ed. by R.R. Martin (Clarendon Press, Oxford, 1987), pp. 39–61

    Google Scholar 

  • D. Bayer, The division algorithm and the Hilbert scheme, Ph.D. thesis, Harvard University, 1982

    Google Scholar 

  • D. Bayer, D. Mumford, What Can Be Computed in Algebraic Geometry?, in Computational Algebraic Geometry and Commutative Algebra, ed. by D. Eisenbud, L. Robbiano (Cambridge University Press, Cambridge, 1993), pp. 1–48

    Google Scholar 

  • D. Bayer, M. Stillman, A criterion for detecting m-regularity. Invent. Math. 87, 1–11 (1987a)

    Article  MathSciNet  Google Scholar 

  • D. Bayer, M. Stillman, A theorem on refining division orders by the reverse lexicographic order. Duke J. Math. 55, 321–328 (1987b)

    Article  MathSciNet  Google Scholar 

  • D. Bayer, M. Stillman, On the Complexity of Computing Syzygies, in ComputationalAspects of Commutative Algebra, ed. by L. Robbiano (Academic Press, New York, 1988), pp. 1–13

    Google Scholar 

  • T. Becker, V. Weispfenning, Gröbner Bases (Springer, New York-Berlin-Heidelberg, 1993)

    Google Scholar 

  • C.T. Benson, L.C. Grove, Finite Reflection Groups, 2nd edn. (Springer, New York-Berlin-Heidelberg, 1985)

    Google Scholar 

  • A. Bigatti, Computation of Hilbert-Poincaré series. J. Pure Appl. Algebra 119, 237–253 (1997)

    Article  MathSciNet  Google Scholar 

  • E. Brieskorn, H. Knörrer, Plane Algebraic Curves (Birkhäuser, Basel-Boston-Stuttgart, 1986)

    Google Scholar 

  • J.W. Bruce, P.J. Giblin, Curves and Singularities, 2nd edn. (Cambridge University Press, Cambridge, 1992)

    Google Scholar 

  • B. Buchberger, Ein algorithmus zum auffinden der basiselemente des restklassenrings nach einem nulldimensionalen polynomideal, Doctoral Thesis, Mathematical Institute, University of Innsbruck, 1965. English translation An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal by M.P. Abramson, J. Symb. Comput. 41, 475–511 (2006)

    Google Scholar 

  • B. Buchberger, Groebner Bases:An Algorithmic Method in Polynomial Ideal Theory, in Multidimensional Systems Theory, ed. by N.K. Bose (D. Reidel Publishing, Dordrecht, 1985), pp. 184–232

    Chapter  Google Scholar 

  • M. Caboara, J. Perry, Reducing the size and number of linear programs in a dynamic Gröbner basis algorithm. Appl. Algebra Eng. Comm. Comput. 25, 99–117 (2014)

    Article  MathSciNet  Google Scholar 

  • J. Canny, D. Manocha, Algorithm for implicitizing rational parametric surfaces. Comput. Aided Geom. Des. 9, 25–50 (1992)

    Google Scholar 

  • S.-C. Chou, Mechanical Geometry Theorem Proving (D. Reidel Publishing, Dordrecht, 1988)

    Google Scholar 

  • H. Clemens, A Scrapbook of Complex Curve Theory, 2nd edn. (American Mathematical Society, Providence, Rhode Island, 2002)

    Google Scholar 

  • A. Cohen, H. Cuypers, H. Sterk (eds.), Some Tapas of Computer Algebra (Springer, Berlin-Heidelberg-New York, 1999)

    Google Scholar 

  • S. Collart, M. Kalkbrener, D. Mall, Converting bases with the Gröbner walk. J. Symb. Comput. 24, 465–469 (1998)

    Article  MathSciNet  Google Scholar 

  • D. Cox, J. Little, D. O’Shea, Using Algebraic Geometry, 2nd edn. (Springer, New York, 2005)

    Google Scholar 

  • H.S.M. Coxeter, Regular Polytopes, 3rd edn. (Dover, New York, 1973)

    Google Scholar 

  • J.H. Davenport, Y. Siret, E. Tournier, Computer Algebra, 2nd edn. (Academic, New York, 1993)

    Google Scholar 

  • W. Decker, G.-M. Greuel, G. Pfister, H. Schönemann, Singular 3-1-6—A computer algebra system for polynomial computations (2012), available at http://www.singular.uni-kl.de

  • W. Decker, G. Pfister, A First Course in Computational Algebraic Geometry. AIMS Library Series (Cambridge University Press, Cambridge, 2013)

    Google Scholar 

  • H. Derksen, G. Kemper, Computational Invariant Theory (Springer, Berlin-Heidelberg-New York, 2002)

    Google Scholar 

  • A. Dickenstein, I. Emiris (eds.), Solving Polynomial Equations (Springer, Berlin-Heidelberg-New York, 2005)

    Google Scholar 

  • J. Draisma, E. Horobeţ, G. Ottaviani, B. Sturmfels, R. Thomas, The Euclidean distance degree of an algebraic variety (2013). arXiv:1309.0049 [math.AG]

    Google Scholar 

  • M. Drton, B. Sturmfels, S. Sullivant, Lectures on Algebraic Statistics. Oberwohlfach Mathematical Seminars, vol. 39 (Birkhäuser, Basel-Boston-Berlin, 2009)

    Google Scholar 

  • T.W. Dubé, The structure of polynomial ideals and Gröbner bases. SIAM J. Comput. 19, 750–775 (1990)

    Article  MathSciNet  Google Scholar 

  • D. Dummit, R. Foote, Abstract Algebra, 3rd edn. (Wiley, New York, 2004)

    Google Scholar 

  • C. Eder, J. Faugère, A survey on signature-based Gröbner basis algorithms (2014). arXiv:1404.1774 [math.AC]

    Google Scholar 

  • D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, 3d corrected printing (Springer, New York-Berlin-Heidelberg, 1999)

    Google Scholar 

  • D. Eisenbud, C. Huneke, W. Vasconcelos, Direct methods for primary decomposition. Invent. Math. 110, 207–235 (1992)

    Article  MathSciNet  Google Scholar 

  • J. Farr, S. Gao, Gröbner bases and generalized Padé approximation. Math. Comp. 75, 461–473 (2006)

    Google Scholar 

  • J. Faugère, A new efficient algorithm for computing Gröbner bases (F4). J. Pure Appl. Algebra 139, 61–88 (1999)

    Google Scholar 

  • J. Faugère, Finding All the Solutions of Cyclic 9 Using Gröbner Basis Techniques, in Computer Mathematics (Matsuyama, 2001), Lecture Notes Ser. Comput., vol. 9 (World Scientific, River Edge, NJ, 2001), pp. 1–12

    Google Scholar 

  • J. Faugère, A new efficient algorithm for computing Gröbner bases without reduction to zero F5. In: Proceedings of ISSAC’02, Villeneuve d’Ascq, France, July 2002, 15–82; revised version from http://www-polsys.lip6.fr/~jcf/Publications/index.html

  • J. Faugère, P. Gianni, D. Lazard, T. Mora, Efficient change of ordering for Gröbner bases of zero-dimensional ideals. J. Symb. Comput. 16, 329–344 (1993)

    Google Scholar 

  • G. Fischer, Plane Algebraic Curves (AMS, Providence, Rhode Island, 2001)

    Google Scholar 

  • J. Foley, A. van Dam, S. Feiner, J. Hughes,Computer Graphics: Principles and Practice, 2nd edn. (Addison-Wesley, Reading, MA, 1990)

    Google Scholar 

  • W. Fulton, Algebraic Curves (W. A. Benjamin, New York, 1969)

    Google Scholar 

  • M. Gallet, H. Rahkooy, Z. Zafeirakopoulos, On Computing the Elimination Ideal Using Resultants with Applications to Gröbner Bases (2013). arXiv:1307.5330 [math.AC]

    Google Scholar 

  • J. von zur Gathen, J. Gerhard, Modern Computer Algebra, 3rd edn. (Cambridge University Press, Cambridge, 2013)

    Google Scholar 

  • C.F. Gauss, Werke, vol. III (Königlichen Gesellschaft der Wissenschaften zu Göttingen, Göttingen, 1876)

    Google Scholar 

  • R. Gebauer, H.M. Möller, On an Installation of Buchberger’s Algorithm, in Computational Aspects of Commutative Algebra, ed. by L. Robbiano (Academic Press, New York, 1988), pp. 141–152

    Article  MathSciNet  Google Scholar 

  • I. Gelfand, M. Kapranov, A. Zelevinsky, Discriminants, Resultants and Multidimensional Determinants (Birkhäuser, Boston, 1994)

    Google Scholar 

  • P. Gianni, B. Trager, G. Zacharias, Gröbner bases and primary decomposition ofpolynomial ideals, in Computational Aspects of Commutative Algebra, ed. by L. Robbiano (Academic Press, New York, 1988), pp. 15–33

    Article  MathSciNet  Google Scholar 

  • A. Giovini, T. Mora, G. Niesi, L. Robbiano, C. Traverso, “One sugar cube, please,” or Selection Strategies in the Buchberger Algorithm, in ISSAC 1991, Proceedings of the 1991International Symposium on Symbolic and Algebraic Computation, ed. by S. Watt (ACM Press, New York, 1991), pp. 49–54

    Google Scholar 

  • M. Giusti, J. Heintz, La détermination des points isolés et de la dimension d’unevariété algébrique peut se faire en temps polynomial, in Computational Algebraic Geometryand Commutative Algebra, ed. by D. Eisenbud, L. Robbiano (Cambridge University Press, Cambridge, 1993), pp. 216–256

    Google Scholar 

  • L. Glebsky, A proof of Hilbert’s Nullstellensatz Based on Groebner bases (2012). arXiv:1204.3128 [math.AC]

    Google Scholar 

  • R. Goldman, Pyramid Algorithms: A Dynamic Programming Approach to Curves and Surfaces in Geometric Modeling (Morgan Kaufman, Amsterdam, Boston, 2003)

    Google Scholar 

  • D. Grayson, M. Stillman, Macaulay2, a Software System for Research (2013), version 1.6, available at http://www.math.uiuc.edu/Macaulay2/

  • G.-M. Greuel, G. Pfister, A Singular Introduction to Commutative Algebra, 2nd edn. (Springer, New York, 2008)

    Google Scholar 

  • P. Griffiths, Introduction to Algebraic Curves. Translations of Mathematical Monographs, vol. 76 (AMS, Providence, 1989)

    Google Scholar 

  • P. Gritzmann, B. Sturmfels, Minkowski addition of polytopes: computational complexity and applications to Gröbner bases. SIAM J. Discrete Math. 6, 246–269 (1993)

    Article  MathSciNet  Google Scholar 

  • J. Harris, Algebraic Geometry, A First Course, corrected edition (Springer, New York, 1995)

    Google Scholar 

  • R. Hartshorne, Algebraic Geometry (Springer, New York, 1977)

    Google Scholar 

  • G. Hermann, Die Frage der endlich vielen schritte in der theorie der polynomideale, Math. Ann. 95, 736–788 (1926)

    Article  MathSciNet  Google Scholar 

  • A. Heyden, K. Åström, Algebraic properties of multilinear constraints. Math. Methods Appl. Sci. 20, 1135–1162 (1997)

    Article  MathSciNet  Google Scholar 

  • D. Hilbert, Über die Theorie der algebraischen Formen, Math. Ann. 36, 473–534 (1890). Reprinted in Gesammelte Abhandlungen, vol. II (Chelsea, New York, 1965)

    Google Scholar 

  • D. Hilbert, Theory of Algebraic Invariants (Cambridge University Press, Cambridge, 1993)

    Google Scholar 

  • J. Hilmar, C. Smyth, Euclid meets Bézout: intersecting algebraic plane curves with the Euclidean algorithm. Am. Math. Monthly 117, 250–260 (2010)

    Google Scholar 

  • H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero I, II. Ann. Math. 79, 109–203, 205–326 (1964)

    Article  MathSciNet  Google Scholar 

  • W.V.D. Hodge, D. Pedoe, Methods of Algebraic Geometry, vol. I and II (Cambridge University Press, Cambridge, 1968)

    Google Scholar 

  • M. Jin, X. Li, D. Wang, A new algorithmic scheme for computing characteristic sets. J. Symb. Comput. 50, 431–449 (2013)

    Article  MathSciNet  Google Scholar 

  • J. Jouanolou, Le formalisme du résultant. Adv. Math. 90, 117–263 (1991)

    Article  MathSciNet  Google Scholar 

  • M. Kalkbrener, Implicitization by Using Gröbner Bases, Technical Report RISC-Series 90-27 (University of Linz, Austria, 1990)

    Google Scholar 

  • K. Kendig, Elementary Algebraic Geometry, 2nd edn. (Dover, New York, 2015)

    Google Scholar 

  • F. Kirwan, Complex Algebraic Curves. London Mathematical Society Student Texts, vol. 23 (Cambridge University Press, Cambridge, 1992)

    Google Scholar 

  • F. Klein, Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vomFünften Grade (Teubner, Leipzig, 1884). English Translation, Lectures on the Ikosahedron and the Solution of Equations of the Fifth Degree (Trubner, London, 1888). Reprinted by Dover, New York (1956)

    Google Scholar 

  • J. Koh, Ideals generated by quadrics exhibiting double exponential degrees. J. Algebra 200, 225–245 (1998)

    Article  MathSciNet  Google Scholar 

  • M. Kreuzer, L. Robbiano, Computational Commutative Algebra, vol. 1 (Springer, New York, 2000)

    Google Scholar 

  • M. Kreuzer, L. Robbiano, Computational Commutative Algebra, vol. 2 (Springer, New York, 2005)

    Google Scholar 

  • T. Krick, A. Logar, An Algorithm for the Computation of the Radical of an Ideal in the Ring of Polynomials, in Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, ed. by H.F. Mattson, T. Mora, T.R.N. Rao. Lecture Notes in Computer Science, vol. 539 (Springer, Berlin, 1991), pp. 195–205

    Chapter  Google Scholar 

  • D. Lazard, Gröbner Bases, Gaussian Elimination and Resolution of Systems of Algebraic Equations, in Computer Algebra: EUROCAL 83, ed. by J.A. van Hulzen. Lecture Notes in Computer Science, vol. 162 (Springer, Berlin, 1983), pp. 146–156

    Google Scholar 

  • D. Lazard, Systems of Algebraic Equations (Algorithms and Complexity), in Computational Algebraic Geometry and Commutative Algebra, ed. by D. Eisenbud, L. Robbiano (Cambridge University Press, Cambridge, 1993), pp. 84–105

    Google Scholar 

  • M. Lejeune-Jalabert, Effectivité des calculs polynomiaux, Cours de DEA 1984–85, Institut Fourier, Université de Grenoble I (1985)

    Google Scholar 

  • F. Macaulay, On some formulæin elimination. Proc. Lond. Math. Soc. 3, 3–27 (1902)

    Google Scholar 

  • D. Manocha, Solving systems of polynomial equations. IEEE Comput. Graph. Appl. 14, 46–55 (1994)

    Article  Google Scholar 

  • Maple 18, Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario (2014). http://www.maplesoft.com

  • M. Marinari, H. Möller, T. Mora, Gröbner bases of ideals defined by functionals with an application to ideals of projective points. Appl. Algebra Eng. Comm. Comput. 4, 103–145 (1993)

    Google Scholar 

  • Mathematica 10, Wolfram Research, Inc., Champaign, Illinois (2014). http://www.wolfram.com/mathematica

  • H. Matsumura, Commutative Ring Theory (Cambridge University Press, Cambridge, 1989)

    Google Scholar 

  • E. Mayr, A. Meyer, The complexity of the word problem for commutative semigroups and polynomial ideals. Adv. Math. 46, 305–329 (1982)

    Article  MathSciNet  Google Scholar 

  • R. Mines, F. Richman, W. Ruitenburg, A Course in Constructive Algebra (Springer, New York-Berlin-Heidelberg, 1988)

    Google Scholar 

  • B. Mishra, Algorithmic Algebra. Texts and Monographs in Computer Science (Springer, New York-Berlin-Heidelberg, 1993)

    Google Scholar 

  • H.M. Möller, F. Mora, Upper and Lower Bounds for the Degree of Groebner Bases, in EUROSAM 1984, ed. by J. Fitch. Lecture Notes in Computer Science, vol. 174 (Springer, New York-Berlin-Heidelberg, 1984), pp. 172–183

    Google Scholar 

  • A. Montes, T. Recio, Generalizing the Steiner–Lehmus theorem using the Gröbner cover. Math. Comput. Simul. 104, 67–81 (2014)

    Google Scholar 

  • A. Montes, M. Wibmer, Gröbner bases for polynomial systems with parameters. J. Symb. Comput. 45, 1391–1425 (2010)

    Article  MathSciNet  Google Scholar 

  • D. Mumford, Algebraic Geometry I: Complex Projective Varieties, cCorrected 2nd printing (Springer, New York-Berlin-Heidelberg, 1981)

    Google Scholar 

  • L. Pachter, B. Sturmfels (eds.), Algebraic Statistics for Computational Biology (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  • R. Paul, Robot Manipulators: Mathematics, Programming and Control (MIT Press, Cambridge, MA, 1981)

    Google Scholar 

  • G. Pistone, E. Riccomagno, H. Wynn, Algebraic Statistics: Computational Commutative Algebra in Statistics. Monographs on Statistics and Applied Probability, vol. 89 (Chapman and Hall, Boca Raton, FL, 2001)

    Google Scholar 

  • L. Robbiano, On the theory of graded structures. J. Symb. Comp. 2, 139–170 (1986)

    Article  MathSciNet  Google Scholar 

  • F. Rouillier, Solving zero-dimensional systems through the rational univariate representation. Appl. Algebra Eng. Comm. Comput. 5, 433–461 (1999)

    Article  MathSciNet  Google Scholar 

  • P. Schauenburg, A Gröbner-based treatment of elimination theory for affine varieties. J. Symb. Comput. 42, 859–870 (2007)

    Google Scholar 

  • A. Seidenberg, Constructions in algebra. Trans. Am. Math. Soc. 197, 273–313 (1974)

    Article  MathSciNet  Google Scholar 

  • A. Seidenberg, On the Lasker–Noether decomposition theorem. Am. J. Math. 106, 611–638 (1984)

    Article  MathSciNet  Google Scholar 

  • J.G. Semple, L. Roth, Introduction to Algebraic Geometry (Clarendon Press, Oxford, 1949)

    Google Scholar 

  • I.R. Shafarevich, Basic Algebraic Geometry 1, 2, 3rd edn. (Springer, New York-Berlin-Heidelberg, 2013)

    Google Scholar 

  • L. Smith, Polynomial Invariants of Finite Groups (A K Peters, Wellesley, MA, 1995)

    Google Scholar 

  • W. Stein et al., Sage Mathematics Software, version 6.3. The Sage Development Team (2014), available at http://www.sagemath.org

  • B. Sturmfels, Computing final polynomials and final syzygies using Buchberger’s Gröbner bases method. Results Math. 15, 351–360 (1989)

    Article  MathSciNet  Google Scholar 

  • B. Sturmfels, Gröbner Bases and Convex Polytopes. University Lecture Series, vol. 8 (American Mathematical Society, Providence, RI, 1996)

    Google Scholar 

  • B. Sturmfels, Algorithms in Invariant Theory, 2nd edn. Texts and Monographs in Symbolic Computation (Springer, New York-Vienna, 2008)

    Google Scholar 

  • I. Swanson, On the embedded primes of the Mayr-Meyer ideals. J. Algebra 275, 143–190 (2004)

    Article  MathSciNet  Google Scholar 

  • C. Traverso, Hilbert functions and the Buchberger algorithm. J. Symb. Comput. 22, 355–376 (1997)

    Article  MathSciNet  Google Scholar 

  • P. Ullrich, Closed-form formulas for projecting constructible sets in the theory of algebraically closed fields. ACM Commun. Comput. Algebra 40, 45–48 (2006)

    Article  Google Scholar 

  • B. van der Waerden, Moderne Algebra, Volume II (Springer, Berlin, 1931). English translations, Modern Algebra, Volume II (F. Ungar Publishing, New York, 1950); Algebra, Volume 2 (F. Ungar Publishing, New York, 1970); and Algebra, Volume II (Springer, New York-Berlin-Heidelberg, 1991). The chapter on Elimination Theory is included in the first three German editions and the 1950 English translation, but all later editions (German and English) omit this chapter

    Google Scholar 

  • R. Walker, Algebraic Curves (Princeton University Press, Princeton, 1950). Reprinted by Dover, 1962

    Google Scholar 

  • D. Wang, Elimination Methods, Texts and Monographs in Symbolic Computation (Springer, Vienna, 2001)

    Book  Google Scholar 

  • V. Weispfenning, Comprehensive Gröbner bases. J. Symb. Comput. 14, 1–29 (1992)

    Article  MathSciNet  Google Scholar 

  • F. Winkler, On the complexity of the Gröbner bases algorithm overK[x, y, z], in EUROSAM 1984, ed. by J. Fitch. Lecture Notes in Computer Science, vol. 174 (Springer, New York-Berlin-Heidelberg, 1984), pp. 184–194

    Google Scholar 

  • W.-T. Wu, On the decision problem and the mechanization of theorem-proving in elementary geometry, in Automated Theorem Proving: After 25 Years, ed. by W. Bledsoe, D. Loveland. Contemporary Mathematics, vol. 29 (American Mathematical Society, Providence, Rhode Island, 1983), pp. 213–234

    Google Scholar 

  • W.-T. Wu, Mathematics Mechanization: Mechanical Geometry Theorem-Proving, Mechanical Geometry Problem-Solving and Polynomial Equations-Solving (Kluwer, Dordrecht, 2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cox, D.A., Little, J., O’Shea, D. (2015). Elimination Theory. In: Ideals, Varieties, and Algorithms. Undergraduate Texts in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-16721-3_3

Download citation

Publish with us

Policies and ethics