Skip to main content

Activated Zeolites and Heteropolyacids Have Efficient Catalysts for Synthesis Without Use of Organic Solvent at Room Temperature

  • Chapter
Book cover Progress in Clean Energy, Volume 1

Abstract

The Thiele–Winter reaction is of interest for synthesis of triacetoxyaromatic precursors of hydroquinones.

Solid acids such as heteropolyacids and activated zeolites have an efficient catalyst in acetoxylation reaction of quinones without the use of organic solvent at room temperature. Hydroquinones and substituted hydroquinones was easily oxidized at room temperature in quinones by using (Pc[Co]/K10) and air (1 atm). We have also tested this type of reaction in naphthoquinone series. Many naphthoquinones are natural products with interesting biological properties. The catalytic system (Pc[Co]/K10) in the presence of pure oxygen easily oxidizes the 1,5-dihydroxynaphthalene in Juglone (yield 87 %).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

(Pc[Co]/K10):

Phthalocyanine (Co) supported on clay K10

Ho:

Index hammett

H3PMo12O40 :

Molybdophosphoric acid

ClSO3H:

Chlorosulfonic acid

H3PW12O40 :

12 Tunsto phosphoric acid

H2SO4 :

Sulfuric acid

(CH3)2(CO)2O:

Acetic anhydride

Rt:

Room temperature

Mp:

Melting points

NMR:

Nuclear magnetic resonance

IR:

Infrared spectroscopy

UV:

Ultraviolet–visible spectrophotometry

MO:

Microwave irradiation

COCl2 :

Cobalt chloride

H :

Hour

p :

Power

T :

Temperature

t :

Time

Λ :

Wavelengths

ε λ :

Molar extinction coefficient

H3SiW12O40 :

Tungstosilicic acid

References

  1. McOmie JFW, Blatchey JM (1972) Thiele–Winter acetoxylation of quinones. Org React 9:199

    Google Scholar 

  2. Spyroudis S (2000) Hydroxyquinones: synthesis and reactivity. Molecules 5:1291

    Article  Google Scholar 

  3. Lira AM, Araújo AAS, Basílio IDJ, Santos BLL, Santana DP, Macedo RO (2007) Compatibility studies of lapachol with pharmaceutical excipients for the development of topical formulations. Thermochim Acta 457:1

    Article  Google Scholar 

  4. Sauriasari R, Wang DH, Takemura Y, Tsutsui K, Masuoka N, Sano K, Horita M, Wang BL, Ogino K (2007) Cytotoxicity of lawsone and cytoprotective activity of antioxidants in catalase mutant Escherichia coli. Toxicology 235(1–2):103–111

    Article  Google Scholar 

  5. Windholz M (1993) The Merck index, 12th edn. Merck, Rahway

    Google Scholar 

  6. Combes R (1907) Procédé de préparation et de purification des dérivés oxyanthrquinoniques et oxynaphtoquinoniques en général, du juglonet de l’émodine en particulier. Bull Soc Chim France 4* série. I, pp 800–816

    Google Scholar 

  7. Soderquist CJ (1973) Juglone and allelopathy. J Chem Educ 50:782–783

    Article  Google Scholar 

  8. Kessl JJ, Moskalev NV, Gribble GW, Nasr M, Meshnicr SR, Trumpower BL (2007) Parameters determining the relative efficacy of hydroxy-naphthoquinone inhibitors of the cytochrome bc1 complex. Biochim Biophys Acta 1767(4):319–326

    Article  Google Scholar 

  9. Teimouri MB, Khavasi HR (2007) One-pot three-component regioselective synthesis of linear naphtho[2,3-b]-furan-4,9-diones. Tetrahedron 63:10269–10275

    Article  Google Scholar 

  10. Valente C, Moreira R, Guedes RC, Iley J, Jaffar M, Douglas KT (2007) The 1,4-naphthoquinone scaffold in the design of cysteine protease inhibitors. Bioorg Med Chem 15(15):5340–5350

    Article  Google Scholar 

  11. Thiele J (1898) Ueber die Einwirkung von Essigsäure-anhydrid auf Chinon und auf Dibenzoylstyrol. Ber Dtsch 31:1247–1249

    Article  Google Scholar 

  12. Thiele J, Winter E (1900) Ueber die Einwirkung von Essigsäureanhydrid und Schwefelsäure auf Chinone. Ann Chem 311:341–352

    Article  Google Scholar 

  13. Burton H, Praill PFG (1952) Acylation reactions catalysed by strong acids. Part VI. A comparison of zinc chloride and perchloric acid as catalysts for the Thiele acetylation of quinines. J Chem Soc 755–759

    Google Scholar 

  14. Gillspie R (1969) J Can Chem Educ 4:9

    Google Scholar 

  15. Michie JK, Miller JA (1981) Phosphorus trichloride as catalyst in the preparation of 1,1-diacetates from aldehydes. Synthesis 10:824–825

    Article  Google Scholar 

  16. Kochhar KS, Bal BS, Deshpande RP, Rajadhyaksha SN, Pinnick HWJ (1983) Protecting groups in organic synthesis. Part 8. Conversion of aldehydes into geminal diacetates. J Org Chem 48:1765–1767

    Article  Google Scholar 

  17. Elbs K (1993) Ueber nitrohydrochinon. J Prakt Chem 48:179

    Article  Google Scholar 

  18. Villemin D (1996) Synthesis and encapsulated metal intercalated phtalocyanure without solvent under microwave irradiation. Actes of 3th Colloque Franco-Magrébin pp. 611

    Google Scholar 

  19. Hull NF, Conant JB (1927) A study of superacid solutions the use of the chloranil electrode in glacial acetic acid and the strength of certain weak bases. J Am Chem Soc 49:3047–3061

    Article  Google Scholar 

  20. Olah GA, Pradash GKS, Sommer J (1985) Superacids. Wiley, New York

    Google Scholar 

  21. Olah GA (1993) Superelectrophiles. Angew Chem Int Ed Engl 32:767

    Article  Google Scholar 

  22. Izumi Y, Urabe K, Onaka M (1992) Zeolite, clay and heteropolyacid, in organic reactions, vol 100. VCH, Weinheim, p 120

    Google Scholar 

  23. Dupont P, Lefebvre F (1996) Esterification of propanoic acid by butanol and 2-ethylhexanol catalyzed by heteropolyacids pure or supported on carbon. J Mol Catal A Chem 114(1–3):299–307

    Article  Google Scholar 

  24. Izumi YK, Matsuo K, Urabe K (1983) Efficient homogenous acid catalysis of heteropoly acid and its characterisation through ether cleavage reactions. J Mol Catal 18:299–314

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Hammadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hammadi, M., Dokari, H., Villemin, D., Benferrah, N. (2015). Activated Zeolites and Heteropolyacids Have Efficient Catalysts for Synthesis Without Use of Organic Solvent at Room Temperature. In: Dincer, I., Colpan, C., Kizilkan, O., Ezan, M. (eds) Progress in Clean Energy, Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-319-16709-1_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16709-1_38

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16708-4

  • Online ISBN: 978-3-319-16709-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics