Skip to main content

Assessment of Turbulence Models for Aerodynamic Performance Analysis of a Commercial Horizontal Axis Wind Turbine

  • Chapter
Progress in Clean Energy, Volume 1
  • 2179 Accesses

Abstract

In this chapter, the results of three-dimensional computational fluid dynamics (CFD) finite volume simulations of airflow around a commercial Vestas V80 Horizontal Axis Wind Turbine (HAWT), with a rated output power of 2 MW, are presented. The grid used in the simulations consists of two main parts, i.e., unstructured mesh rotating with blades and structured hexahedral stationary one for the external domain. Several cases with different free stream velocities (and different tip speed ratios and mean pitch angles) are studied, employing four different turbulence models: \( k-\omega \) SST, \( {\overline{\upsilon}}^2-f \), \( k-\varepsilon \) RNG and Spalart–Allmaras one-equation, in order to examine their ability to predict the output generated power of HAWTs. The investigation outcomes are compared with each other and existing experimental result given in previous studies. It is shown that the numerical results are in acceptable agreement with experiments. Regarding assumptions during simulations, more sensible output power values are obtained through \( k-\varepsilon \) RNG and \( {\overline{\upsilon}}^2-f \) models. In addition, maximum value of power coefficient occurs at more accurate associated wind speed using \( {\overline{\upsilon}}^2-f \) model. The simulations provide useful guidelines to design more efficient large commercial wind turbines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A S :

Swept area (m2)

BEM:

Blade element momentum

C D :

Drag coefficient

CFD:

Computational fluid dynamic

C m :

Moment coefficient

C P :

Power coefficient

HAWT:

Horizontal Axis Wind Turbine

I :

Turbulence intensity (%)

k :

Turbulent kinetic energy (m2/s2)

LES:

Large eddy simulation

p :

Pressure (N m2)

Re :

Reynolds number

RNG:

Renormalization group

SA:

Spalart–Allmaras

SST:

Shear stress transport

\( {U}_{\infty } \) :

Velocity at infinity (m/s)

V :

Local velocity magnitude (m/s)

y + :

Distance to wall in viscous units

ε :

Turbulent energy dissipation rate (m2/s3)

λ :

Tip speed ratio

μ :

Dynamic viscosity (N s/m2)

μ t :

Turbulent viscosity (N s/m2)

Ω :

Angular velocity (rad/s)

ω :

Specific rate of turbulent energy dissipation (s−1)

ρ :

Density (kg/m3)

τ :

Stress tensor (N/m2)

\( \varnothing \) :

Normal components of the pressure-strain

Eff:

Effective

i, j, k :

Space subscripts

t :

Time subscript

T:

Transpose of a matrix

v:

Viscous

References

  1. Widjanarko SM (2010) Steady blade element momentum code for wind turbine design validation tool. Internship Vestas Wind System A/S, Twente University

    Google Scholar 

  2. Hartwagner D, Horvat A (2008) 3D modeling of a wind turbine using CFD. In: NAFEMS conference

    Google Scholar 

  3. Galdamez RG, Ferguson DM, Gutierrez JR (2011) Design optimization of winglets for wind turbine rotor blades report. Thesis, Florida International University

    Google Scholar 

  4. Tangler J (2002) The nebulous art of using wind-tunnel airfoil data for predicting rotor performance. NREL/CP-500-31243, National Renewable Energy Laboratory, CO

    Google Scholar 

  5. Vaz JRP, Pinho JT, Mesquita ALA (2011) An extension of BEM method applied to horizontal-axis wind turbine design. J Renew Energy 36:1734–1740

    Article  Google Scholar 

  6. Esfahanian V, Salavati Pour A, Harsini I, Haghani A, Pasandeh A, Shahbazi A, Ahmadi G (2013) Numerical analysis of flow field around NREL Phase II wind turbine by a hybrid CFD/BEM method. J Wind Eng Ind Aerodyn 120:29–36

    Article  Google Scholar 

  7. Sezer-Uzol N, Long LN (2006) 3-D time-accurate CFD simulations of wind turbine rotor flow fields. AIAA. Paper No. 2006-0394

    Google Scholar 

  8. Zhou B, Chow FK (2012) Turbulence modeling for the stable atmospheric boundary layer and implications for wind energy. J Flow Turbul Combust 88:255–277. doi:10.1007/s10494-011-9359-7

    Article  MATH  Google Scholar 

  9. Chathelain P, Backaert S, Winkelmans G, Kern S (2013) Large eddy simulation of wind turbine wakes. Flow Turbul Combust 1(3):587–605. doi:10.1007/s10494-013-9474-8

    Article  Google Scholar 

  10. Jeon M, Lee S (2014) Unsteady aerodynamics of offshore floating wind turbines in platform pitching motion using vortex lattice method. J Renew Energy 65:207–212

    Article  Google Scholar 

  11. Lanzafame R, Mauro S, Messina M (2013) Wind turbine CFD modeling using a correlation-based transitional model. J Renew Energy 52:31–39

    Article  Google Scholar 

  12. Wang Q, Zhou H, Wan D (2012) Numerical simulation of wind turbine blade-tower interaction. J Mar Sci 11:321–327

    Google Scholar 

  13. Shojaeefard MH, Tahani M, Ehghaghi MB, Fallahian MA, Beglari M (2012) Numerical study of the effects of some geometric characteristics of a centrifugal pump impeller that pumps a viscous fluid. Comput Fluids 60:61–70

    Article  Google Scholar 

  14. Yakhot V, Orszag SA (1986) Renormalization group analysis of turbulence: I. Basic theory. J Sci Comput 1(1):1–51

    Article  MathSciNet  Google Scholar 

  15. Menter FR (1994) Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J 32(8):1598–1605

    Article  Google Scholar 

  16. Laurence DR, Uribe JC, Utyuzhnikov SV (2004) A robust formulation of the \( {\overline{\upsilon}}^2-f \) model. J Flow Turbul Combust 73:169–185

    Article  MATH  Google Scholar 

  17. Durbin PA, Pettersson Reif BA (2001) Statistical theory and modeling for turbulent flows. Wiley, Chichester

    MATH  Google Scholar 

  18. Hansen KS, Barthelmie RJ, Jensen LE, Sommer A (2012) The impact of turbulence intensity and atmospheric stability on power deficits due to wind turbine wakes at horns rev wind farm. J Wind Energy 15:183–196. doi:10.1002/we.512

    Article  Google Scholar 

  19. http://www.vestas.com. Accessed 29 Sept 2013

  20. Wood D (2011) Small wind turbines, analysis, design, and application. Springer, London

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojtaba Tahani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tahani, M. (2015). Assessment of Turbulence Models for Aerodynamic Performance Analysis of a Commercial Horizontal Axis Wind Turbine. In: Dincer, I., Colpan, C., Kizilkan, O., Ezan, M. (eds) Progress in Clean Energy, Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-319-16709-1_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16709-1_36

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16708-4

  • Online ISBN: 978-3-319-16709-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics