Skip to main content

Computational Protein Design Using AND/OR Branch-and-Bound Search

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9029))

Abstract

The computation of the global minimum energy conformation (GMEC) is an important and challenging topic in structure-based computational protein design. In this paper, we propose a new protein design algorithm based on the AND/OR branch-and-bound (AOBB) search, which is a variant of the traditional branch-and-bound search algorithm, to solve this combinatorial optimization problem. By integrating with a powerful heuristic function, AOBB is able to fully exploit the graph structure of the underlying residue interaction network of a backbone template to significantly accelerate the design process. Tests on real protein data show that our new protein design algorithm is able to solve many problems that were previously unsolvable by the traditional exact search algorithms, and for the problems that can be solved with traditional provable algorithms, our new method can provide a large speedup by several orders of magnitude while still guaranteeing to find the global minimum energy conformation (GMEC) solution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Althaus, E., Kohlbacher, O., Lenhof, H.-P., Müller, P.: A combinatorial approach to protein docking with flexible side chains. Journal of Computational Biology 9(4), 597–612 (2002)

    Article  Google Scholar 

  2. Chen, C.-Y., Georgiev, I., Anderson, A.C., Donald, B.R.: Computational structure-based redesign of enzyme activity. Proceedings of the National Academy of Sciences 106(10), 3764–3769 (2009)

    Article  Google Scholar 

  3. Allouche, J.D.D., de Givry, G.K.S., Schiex, I.A.T., Barbe, S.T.S., Prestwich, B.O.S.: Computational protein design as an optimization problem. Artificial Intelligence 212, 59–79 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dechter, R.: Bucket elimination: a unifying framework for probabilistic inference. In: Learning in Graphical Models, pp. 75–104. Springer (1998)

    Google Scholar 

  5. Dechter, R., Rish, I.: Mini-buckets: A general scheme for bounded inference. Journal of the ACM (JACM) 50(2), 107–153 (2003)

    Article  MathSciNet  Google Scholar 

  6. Desmet, J., Maeyer, M.D., Hazes, B., Lasters, I.: The dead-end elimination theorem and its use in protein side-chain positioning. Nature 356(6369), 539–542 (1992)

    Article  Google Scholar 

  7. Donald, B.R.: Algorithms in structural molecular biology. The MIT Press (2011)

    Google Scholar 

  8. Freuder, E.C., Quinn, M.J.: Taking advantage of stable sets of variables in constraint satisfaction problems. In: International Joint Conference on Artificial Intelligence, vol. 85, pp. 1076–1078 (1985)

    Google Scholar 

  9. Frey, K.M., Georgiev, I., Donald, B.R., Anderson, A.C.: Predicting resistance mutations using protein design algorithms. Proceedings of the National Academy of Sciences 107(31), 13707–13712 (2010)

    Article  Google Scholar 

  10. Gainza, P., Roberts, K.E., Donald, B.R.: Protein design using continuous rotamers. PLoS Computational Biology 8(1), e1002335 (2012)

    Article  Google Scholar 

  11. Globerson, A., Jaakkola, T.S.: Fixing max-product: convergent message passing algorithms for MAP LP-relaxations. In: Advances in Neural Information Processing Systems, pp. 553–560 (2008)

    Google Scholar 

  12. Goldstein, R.F.: Efficient rotamer elimination applied to protein side-chains and related spin glasses. Biophysical Journal 66(5), 1335–1340 (1994)

    Article  Google Scholar 

  13. Gorczynski, M.J., Grembecka, J., Zhou, Y., Kong, Y., Roudaia, L., Douvas, M.G., Newman, M., Bielnicka, I., Baber, G., Corpora, T., et al.: Allosteric inhibition of the protein-protein interaction between the leukemia-associated proteins Runx1 and CBF\(\beta \). Chemistry & Biology 14(10), 1186–1197 (2007)

    Article  Google Scholar 

  14. Hong, E.-J., Lozano-Pérez, T.: Protein side-chain placement through MAP estimation and problem-size reduction. In: Bücher, P., Moret, B.M.E. (eds.) WABI 2006. LNCS (LNBI), vol. 4175, pp. 219–230. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Ihler, A.T., Flerova, N., Dechter, R., Otten, L.: Join-graph based cost-shifting schemes. arXiv preprint arXiv:1210.4878 (2012)

  16. Kask, K., Dechter, R.: A general scheme for automatic generation of search heuristics from specification dependencies. Artificial Intelligence 129(1), 91–131 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Keedy, D.A., Chen, C.-Y., Rezam, F., Andersonl, A.C.: OSPREY: Protein design with ensembles, flexibility, and provable algorithms. Methods in Protein Design, 87 (2013)

    Google Scholar 

  18. Kingsford, C.L., Chazelle, B., Singh, M.: Solving and analyzing side-chain positioning problems using linear and integer programming. Bioinformatics 21(7), 1028–1039 (2005)

    Article  Google Scholar 

  19. Korkegian, A., Black, M.E., Baker, D., Stoddard, B.L.: Computational thermostabilization of an enzyme. Science 308(5723), 857–860 (2005)

    Article  Google Scholar 

  20. Kuhlman, B., Baker, D.: Native protein sequences are close to optimal for their structures. Proceedings of the National Academy of Sciences 97(19), 10383–10388 (2000)

    Article  Google Scholar 

  21. Leach, A.R., Lemon, A.P., et al.: Exploring the conformational space of protein side chains using dead-end elimination and the A* algorithm. Proteins Structure Function and Genetics 33(2), 227–239 (1998)

    Article  Google Scholar 

  22. Lippow, S.M., Tidor, B.: Progress in computational protein design. Current Opinion in Biotechnology 18(4), 305–311 (2007)

    Article  Google Scholar 

  23. Marinescu, R., Dechter, R.: AND/OR branch-and-bound search for combinatorial optimization in graphical models. Artificial Intelligence 173(16), 1457–1491 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Marvin, J.S., Hellinga, H.W.: Conversion of a maltose receptor into a zinc biosensor by computational design. Proceedings of the National Academy of Sciences 98(9), 4955–4960 (2001)

    Article  Google Scholar 

  25. Otten, L., Dechter, R.: Anytime and/or depth-first search for combinatorial optimization. AI Communications 25(3), 211–227 (2012)

    MATH  MathSciNet  Google Scholar 

  26. Otten, L., Ihler, A., Kask, K., Dechter, R.: Winning the PASCAL 2011 MAP challenge with enhanced AND/OR branch-and-bound. In: DISCML (2012)

    Google Scholar 

  27. Pierce, N.A., Winfree, E.: Protein design is NP-hard. Protein Engineering 15(10), 779–782 (2002)

    Article  Google Scholar 

  28. Roberts, K.E., Cushing, P.R., Boisguerin, P., Madden, D.R., Donald, B.R.: Computational design of a PDZ domain peptide inhibitor that rescues CFTR activity. PLoS Computational Biology 8(4), e1002477 (2012)

    Article  Google Scholar 

  29. Robertson, N., Seymour, P.D.: Algorithmic aspects of tree-width. Journal of Algorithms 7(3), 309–322 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  30. Street, A.G., Mayo, S.L.: Computational protein design. Structure 7(5), R105–R109 (1999)

    Article  Google Scholar 

  31. Traoré, S., Allouche, D., André, I., de Givry, S., Katsirelos, G., Schiex, T., Barbe, S.: A new framework for computational protein design through cost function network optimization. Bioinformatics 29(17), 2129–2136 (2013)

    Article  Google Scholar 

  32. Xu, J., Berger, B.: Fast and accurate algorithms for protein side-chain packing. Journal of the ACM (JACM) 53(4), 533–557 (2006)

    Article  MathSciNet  Google Scholar 

  33. Zhou, Y., Wu, Y., Zeng, J.: Appendix of “computational protein design using AND/OR branch-and-bound search” (2015). http://iiis.tsinghua.edu.cn/~compbio/papers/recomb15AOBBapx.pdf

  34. Zhou, Y., Xu, W., Donald, B.R., Zeng, J.: An efficient parallel algorithm for accelerating computational protein design. Bioinformatics 30(12), i255–i263 (2014)

    Article  Google Scholar 

  35. Zhou, Y., Zeng, J.: Massively parallel A* search on a GPU. In: Proceedings of the National Conference on Artificial Intelligence (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianyang Zeng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhou, Y., Wu, Y., Zeng, J. (2015). Computational Protein Design Using AND/OR Branch-and-Bound Search. In: Przytycka, T. (eds) Research in Computational Molecular Biology. RECOMB 2015. Lecture Notes in Computer Science(), vol 9029. Springer, Cham. https://doi.org/10.1007/978-3-319-16706-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16706-0_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16705-3

  • Online ISBN: 978-3-319-16706-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics