Skip to main content

A Novel Probabilistic Methodology for eQTL Analysis of Signaling Networks

  • Conference paper
  • First Online:
Research in Computational Molecular Biology (RECOMB 2015)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9029))

  • 2814 Accesses

Abstract

Quantitative trait loci (QTL) studies of common diseases have been spectacularly successful in the last few years and became routine in medical genetics. These studies typically identify genetic variants (QTLs) that are associated with organismal phenotypes, such as susceptibility to disease. Genetic variants can underlie the abundance of gene transcripts, forming ‘expression QTLs’ (eQTLs; [1]). Despite the biomedical importance of understanding how such loci truly affect quantitative traits, several questions remain unsolved: What is the particular mechanism by which a genomic locus affects a quantitative trait? Which specific signaling pathways are responsible for propagating the inherited variation from an eQTL to the gene expression or physiological trait? On which component within such a pathway does the genetic variant act? While it is clear that genetic variants play a critical role in quantitative traits, it is still not fully understood how such variants lead to the inherited variation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mackay, T.F., Stone, E.A., Ayroles, J.F.: The genetics of quantitative traits: challenges and prospects. Nat. Rev. Genet. 10(8), 565–577 (2009)

    Article  Google Scholar 

  2. Kim, Y.A., Przytycka, T.M.: Bridging the Gap between Genotype and Phenotype via Network Approaches. Frontiers in Genetics 3, 227 (2012)

    Google Scholar 

  3. Tu, Z., Wang, L., Arbeitman, M.N., Chen, T., Sun, F.: An integrative approach for causal gene identification and gene regulatory pathway inference. Bioinformatics 22(14), e489–e496 (2006)

    Article  Google Scholar 

  4. Suthram, S., Beyer, A., Karp, R.M., Eldar, Y., Ideker, T.: eQED: an efficient method for interpreting eQTL associations using protein networks. Mol. Syst. Biol. 4, 162 (2008)

    Article  Google Scholar 

  5. Gagneur, J., Stegle, O., Zhu, C., Jakob, P., Tekkedil, M.M., Aiyar, R.S., Schuon, A.K., Pe’er, D., Steinmetz, L.M.: Genotype-environment interactions reveal causal pathways that mediate genetic effects on phenotype. PLoS Genetics 9(9), e1003803 (2013)

    Article  Google Scholar 

  6. Gat-Viks, I., Chevrier, N., Wilentzik, R., Eisenhaure, T., Raychowdhury, R., Steuerman, Y., Shalek, A.K., Hacohen, N., Amit, I., Regev, A.: Deciphering molecular circuits from genetic variation underlying transcriptional responsiveness to stimuli. Nat. Biotechnol. 31(4), 342–349 (2013)

    Article  Google Scholar 

  7. Peirce, J.L., Lu, L., Gu, J., Silver, L.M., Williams, R.W.: A new set of BXD recombinant inbred lines from advanced intercross populations in mice. BMC Genet. 5, 7 (2004)

    Article  Google Scholar 

  8. Kawai, T., Akira, S.: The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11(5), 373–384 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irit Gat-Viks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Wilentzik, R., Gat-Viks, I. (2015). A Novel Probabilistic Methodology for eQTL Analysis of Signaling Networks. In: Przytycka, T. (eds) Research in Computational Molecular Biology. RECOMB 2015. Lecture Notes in Computer Science(), vol 9029. Springer, Cham. https://doi.org/10.1007/978-3-319-16706-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16706-0_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16705-3

  • Online ISBN: 978-3-319-16706-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics