Skip to main content

Haplotype Allele Frequency (HAF) Score: Predicting Carriers of Ongoing Selective Sweeps Without Knowledge of the Adaptive Allele

  • Conference paper
  • First Online:
Research in Computational Molecular Biology (RECOMB 2015)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9029))

Abstract

Methods for detecting the genomic signatures of natural selection are heavily studied, and have been successful in identifying many selective sweeps. For the vast majority of these sweeps the adaptive allele remains unknown, making it difficult to distinguish carriers of the sweep from non-carriers. Because carriers of ongoing selective sweeps are likely to contain a future most recent common ancestor, identifying them may prove useful in predicting the evolutionary trajectory– for example, in contexts involving drug-resistant pathogen strains or cancer subclones. The main contribution of this paper is the development and analysis of a new statistic, the Haplotype Allele Frequency (HAF) score, assigned to individual haplotypes in a sample. The HAF score naturally captures many of the properties shared by haplotypes carrying an adaptive allele. We provide a theoretical model for the behavior of the HAF score under different evolutionary scenarios, and validate the interpretation of the statistic with simulated data. We develop an algorithm (\(\text {PreCIOSS}\): Predicting Carriers of Ongoing Selective Sweeps) to identify carriers of the adaptive allele in selective sweeps, and we demonstrate its power on simulations of both hard and soft selective sweeps, as well as on data from well-known sweeps in human populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lachance, J., Tishkoff, S.A.: Population Genomics of Human Adaptation. Annu. Rev. Ecol. Evol. Syst. 44, 123–143 (2013)

    Article  Google Scholar 

  2. Vitti, J.J., Grossman, S.R., Sabeti, P.C.: Detecting natural selection in genomic data. Annu. Rev. Genet. 47, 97–120 (2013)

    Article  Google Scholar 

  3. Nielsen, R., Williamson, S., Kim, Y., Hubisz, M.J., Clark, A.G., Bustamante, C.: Genomic scans for selective sweeps using snp data. Genome Research 15(11), 1566–1575 (2005)

    Article  Google Scholar 

  4. Pickrell, J.K., Coop, G., Novembre, J., Kudaravalli, S., Li, J.Z., Absher, D., Srinivasan, B.S., Barsh, G.S., Myers, R.M., Feldman, M.W., Pritchard, J.K.: Signals of recent positive selection in a worldwide sample of human populations. Genome Res. 19, 826–837 (2009)

    Article  Google Scholar 

  5. Chen, H., Patterson, N., Reich, D.: Population differentiation as a test for selective sweeps. Genome Res. 20, 393–402 (2010)

    Article  Google Scholar 

  6. Berg, J.J., Coop, G.: A population genetic signal of polygenic adaptation. PLoS Genet. 10, e1004412 (2014)

    Article  Google Scholar 

  7. Jeong, C., Di Rienzo, A.: Adaptations to local environments in modern human populations. Curr. Opin. Genet. Dev. 29C, 1–8 (2014)

    Article  Google Scholar 

  8. Tekola-Ayele, F., Adeyemo, A., Chen, G., Hailu, E., Aseffa, A., Davey, G., Newport, M.J., Rotimi, C.N.: Novel genomic signals of recent selection in an Ethiopian population. Eur. J. Hum. Genet., November 2014

    Google Scholar 

  9. Yi, X., et al.: Sequencing of 50 human exomes reveals adaptation to high altitude. Science 329(5987), 75–78 (2010)

    Article  Google Scholar 

  10. Simonson, T.S., Yang, Y., Huff, C.D., Yun, H., Qin, G., Witherspoon, D.J., Bai, Z., Lorenzo, F.R., Xing, J., Jorde, L.B., Prchal, J.T., Ge, R.: Genetic evidence for high-altitude adaptation in Tibet. Science 329, 72–75 (2010)

    Article  Google Scholar 

  11. Scheinfeldt, L.B., Soi, S., Thompson, S., Ranciaro, A., Woldemeskel, D., Beggs, W., Lambert, C., Jarvis, J.P., Abate, D., Belay, G., Tishkoff, S.A.: Genetic adaptation to high altitude in the Ethiopian highlands. Genome Biol. 13(1), R1 (2012)

    Article  Google Scholar 

  12. Alkorta-Aranburu, G., Beall, C.M., Witonsky, D.B., Gebremedhin, A., Pritchard, J.K., Di Rienzo, A.: The genetic architecture of adaptations to high altitude in Ethiopia. PLoS Genet. 8(12), e1003110 (2012)

    Article  Google Scholar 

  13. Huerta-Sanchez, E., Degiorgio, M., Pagani, L., Tarekegn, A., Ekong, R., Antao, T., Cardona, A., Montgomery, H.E., Cavalleri, G.L., Robbins, P.A., Weale, M.E., Bradman, N., Bekele, E., Kivisild, T., Tyler-Smith, C., Nielsen, R.: Genetic signatures reveal high-altitude adaptation in a set of ethiopian populations. Mol. Biol. Evol. 30, 1877–1888 (2013)

    Article  Google Scholar 

  14. Udpa, N., Ronen, R., Zhou, D., Liang, J., Stobdan, T., Appenzeller, O., Yin, Y., Du, Y., Guo, L., Cao, R., Wang, Y., Jin, X., Huang, C., Jia, W., Cao, D., Guo, G., Claydon, V.E., Hainsworth, R., Gamboa, J.L., Zibenigus, M., Zenebe, G., Xue, J., Liu, S., Frazer, K.A., Li, Y., Bafna, V., Haddad, G.G.: Whole genome sequencing of Ethiopian highlanders reveals conserved hypoxia tolerance genes. Genome Biol. 15, R36 (2014)

    Article  Google Scholar 

  15. Zhou, D., Udpa, N., Ronen, R., Stobdan, T., Liang, J., Appenzeller, O., Zhao, H.W., Yin, Y., Du, Y., Guo, L., Cao, R., Wang, Y., Jin, X., Huang, C., Jia, W., Cao, D., Guo, G., Gamboa, J.L., Villafuerte, F., Callacondo, D., Xue, J., Liu, S., Frazer, K.A., Li, Y., Bafna, V., Haddad, G.G.: Whole-genome sequencing uncovers the genetic basis of chronic mountain sickness in Andean highlanders. Am. J. Hum. Genet. 93, 452–462 (2013)

    Article  Google Scholar 

  16. Tajima, F.: Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989)

    Google Scholar 

  17. Fay, J.C., Wu, C.I.: Hitchhiking under positive Darwinian selection. Genetics 155, 1405–1413 (2000)

    Google Scholar 

  18. Pavlidis, P., Jensen, J.D., Stephan, W.: Searching for footprints of positive selection in whole-genome snp data from nonequilibrium populations. Genetics 185(3), 907–922 (2010)

    Article  Google Scholar 

  19. Lin, K., Li, H., Schltterer, C., Futschik, A.: Distinguishing positive selection from neutral evolution: Boosting the performance of summary statistics. Genetics 187(1), 229–244 (2011)

    Article  Google Scholar 

  20. Ronen, R., Udpa, N., Halperin, E., Bafna, V.: Learning natural selection from the site frequency spectrum. Genetics 195, 181–193 (2013)

    Article  Google Scholar 

  21. Simonsen, K.L., Churchill, G.A., Aquadro, C.F.: Properties of statistical tests of neutrality for DNA polymorphism data. Genetics 141, 413–429 (1995)

    Google Scholar 

  22. Braverman, J.M., Hudson, R.R., Kaplan, N.L., Langley, C.H., Stephan, W.: The hitchhiking effect on the site frequency spectrum of DNA polymorphisms. Genetics 140, 783–796 (1995)

    Google Scholar 

  23. Hudson, R.R., Bailey, K., Skarecky, D., Kwiatowski, J., Ayala, F.J.: Evidence for positive selection in the superoxide dismutase (Sod) region of Drosophila melanogaster. Genetics 136, 1329–1340 (1994)

    Google Scholar 

  24. Depaulis, F., Mousset, S., Veuille, M.: Haplotype tests using coalescent simulations conditional on the number of segregating sites. Mol. Biol. Evol. 18, 1136–1138 (2001)

    Article  Google Scholar 

  25. Innan, H., Zhang, K., Marjoram, P., Tavare, S., Rosenberg, N.A.: Statistical tests of the coalescent model based on the haplotype frequency distribution and the number of segregating sites. Genetics 169, 1763–1777 (2005)

    Article  Google Scholar 

  26. Sabeti, P.C., Reich, D.E., Higgins, J.M., Levine, H.Z., Richter, D.J., Schaffner, S.F., Gabriel, S.B., Platko, J.V., Patterson, N.J., McDonald, G.J., et al.: Detecting recent positive selection in the human genome from haplotype structure. Nature 419(6909), 832–837 (2002)

    Article  Google Scholar 

  27. Toomajian, C., Hu, T.T., Aranzana, M.J., Lister, C., Tang, C., Zheng, H., Zhao, K., Calabrese, P., Dean, C., Nordborg, M.: A nonparametric test reveals selection for rapid flowering in the Arabidopsis genome. PLoS Biol. 4, e137 (2006)

    Article  Google Scholar 

  28. Sabeti, P.C., et al.: Genome-wide detection and characterization of positive selection in human populations. Nature 449, 913–918 (2007)

    Article  Google Scholar 

  29. Fu, Y.X.: Statistical properties of segregating sites. Theor. Popul. Biol. 48, 172–197 (1995)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vineet Bafna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ronen, R., Tesler, G., Akbari, A., Zakov, S., Rosenberg, N.A., Bafna, V. (2015). Haplotype Allele Frequency (HAF) Score: Predicting Carriers of Ongoing Selective Sweeps Without Knowledge of the Adaptive Allele. In: Przytycka, T. (eds) Research in Computational Molecular Biology. RECOMB 2015. Lecture Notes in Computer Science(), vol 9029. Springer, Cham. https://doi.org/10.1007/978-3-319-16706-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16706-0_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16705-3

  • Online ISBN: 978-3-319-16706-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics