Exploration of Designability of Proteins Using Graph Features of Contact Maps: Beyond Lattice Models

  • Sumudu P. Leelananda
  • Robert L. Jernigan
  • Andrzej KloczkowskiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9029)


Highly designable structures can be distinguished based on certain geometric graphical features of the interactions confirming the fact that the topology of a protein structure and its residue-residue interaction network are important determinants of its designability. The most designable structures and poorly designable structures obtained for sets of proteins having the same number of residues are compared, and it is shown that the most designable structures predicted by the graph features of the contact diagrams are more densely packed whereas the poorly designable structures are more open loop type structures or structures that are loosely packed. Interestingly enough, it can also be seen that these highly designable structures obtained are also common structural motifs found in nature.


Designability Contact maps Graph features 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Li, H., Helling, R., Tang, C., Wingreen, N.: Emergence of Preferred Structures in a Simple Model of Protein Folding. Science 273, 666–669 (1996)CrossRefGoogle Scholar
  2. 2.
    Dill, K.A.: Polymer principles and protein folding. Protein Science 8, 1166–1180 (1999)CrossRefGoogle Scholar
  3. 3.
    Cejtin, H., Edler, J., Gottlieb, A., Helling, R., Li, H., Philbin, J., Wingreen, N., Tang, C.: Fast tree search for enumeration of a lattice model of protein folding. Journal of Chemical Physics 116 (2002)Google Scholar
  4. 4.
    Helling, R., Li, H., Melin, R., Miller, J., Wingreen, N., Zeng, C., Tang, C.: The designability of protein structures. Journal of Molecular Graphics and Modelling 19, 157–167 (2001)CrossRefGoogle Scholar
  5. 5.
    Yang, J.-Y., Yu, Z.-G., Anh, V.: Correlations between designability and various structural characteristics of protein lattice models. Journal of Chemical Physics 126 (2007)Google Scholar
  6. 6.
    Melin, R., Li, H., Wingreen, N.S., Tang, C.: Designability, thermodynamic stability, and dynamics in protein folding: A lattice model study. Journal of Chemical Physics 110 (1999)Google Scholar
  7. 7.
    Tang, C.: Simple models of the protein folding problem. Physica A: Statistical Mechanics and its Applications 288, 31–48 (2000)CrossRefGoogle Scholar
  8. 8.
    Miller, J., Zeng, C., Wingreen, N.S., Tang, C.: Emergence of highly designable protein-backbone conformations in an off-lattice model. Proteins 47, 506–512 (2002)CrossRefGoogle Scholar
  9. 9.
    Liang, H.-J., Wang, Y.-Y.: Influence of Monomer Types on the Designability of a Protein-Model Chain. Chinese Physics Letters 19, 1382 (2002)CrossRefGoogle Scholar
  10. 10.
    Wong, P., Frishman, D.: Fold Designability, Distribution, and Disease. PLoS Comput. Biol. 2, e40 (2006). doi: 10.1371/journal.pcbi.0020040 CrossRefGoogle Scholar
  11. 11.
    Atilgan, A.R., Akan, P., Baysal, C.: Small-World Communication of Residues and Significance for Protein Dynamics. Biophysical Journal 86, 85–91 (2004). doi: 10.1016/S0006-3495(04)74086-2 CrossRefGoogle Scholar
  12. 12.
    Bagler, G., Sinha, S.: Network properties of protein structures. Physica A: Statistical Mechanics and its Applications 346, 27–33 (2005)CrossRefGoogle Scholar
  13. 13.
    Dokholyan, N.V., Li, L., Ding, F., Shakhnovich, E.I.: Topological determinants of protein folding. Proceedings of the National Academy of Sciences 99, 8637–8641 (2002)CrossRefGoogle Scholar
  14. 14.
    Greene, L.H., Higman, V.A.: Uncovering Network Systems Within Protein Structures. Journal of Molecular Biology 334, 781–791 (2003)CrossRefGoogle Scholar
  15. 15.
    Kloczkowski, A., Jernigan, R.L.: Efficient Method To Count and Generate Compact Protein Lattice Conformations. Macromolecules 30, 6691–6694 (1997). doi: 10.1021/ma970662h CrossRefGoogle Scholar
  16. 16.
    Brinda, K.V., Vishveshwara, S.: A Network Representation of Protein Structures: Implications for Protein Stability. Biophysical Journal 89, 4159–4170 (2005). doi: 10.1529/biophysj.105.064485 CrossRefGoogle Scholar
  17. 17.
    Doncheva, N.T., Assenov, Y., Domingues, F.S., Albrecht, M.: Topological analysis and interactive visualization of biological networks and protein structures. Nat Protocols 7, 670–685 (2012). doi: 10.1038/nprot.2012.004 CrossRefGoogle Scholar
  18. 18.
    Meyerguz, L., Kleinberg, J., Elber, R.: The network of sequence flow between protein structures. Proceedings of the National Academy of Sciences 104, 11627–11632 (2007)CrossRefGoogle Scholar
  19. 19.
    Milenkovic, T., Filippis, I., Lappe, M., Przulj, N.: Optimized Null Model for Protein Structure Networks. PLoS ONE 4, e5967 (2009). doi: 10.1371/journal.pone.0005967 CrossRefGoogle Scholar
  20. 20.
    Yan, W., Sun, M., Hu, G., Zhou, J., Zhang, W., Chen, J., Chen, B., Shen, B.: Amino acid contact energy networks impact protein structure and evolution. Journal of Theoretical Biology 355, 95–104 (2014)CrossRefGoogle Scholar
  21. 21.
    Krishnan, A., Zbilut, J.P., Tomita, M., Giuliani, A.: Proteins as networks: Usefulness of graph theory in protein science. Current Protein and Peptide Science 9 (2008)Google Scholar
  22. 22.
    Sistla, R.K., Brinda, K.V., Vishveshwara, S.: Identification of domains and domain interface residues in multidomain proteins from graph spectral method. Proteins 59, 616–626 (2005)CrossRefGoogle Scholar
  23. 23.
    Jha, A.N., Ananthasuresh, G.K., Vishveshwara, S.: A Search for Energy Minimized Sequences of Proteins. PLoS ONE 4, e6684 (2009). doi: 10.1371/journal.pone.0006684 CrossRefGoogle Scholar
  24. 24.
    Lai, Z., Su, J., Chen, W., Wang, C.: Uncovering the Properties of Energy-Weighted Conformation Space Networks with a Hydrophobic-Hydrophilic Model. International Journal of Molecular Sciences 10, 1808–1823 (2009)CrossRefGoogle Scholar
  25. 25.
    Amitai, G., Shemesh, A., Sitbon, E., Shklar, M., Netanely, D., Venger, I., Pietrokovski, S.: Network Analysis of Protein Structures Identifies Functional Residues. Journal of Molecular Biology 344, 1135–1146 (2004)CrossRefGoogle Scholar
  26. 26.
    Vishveshwara, S.A.R.A., Brinda, K.V., Kannan, N.: Protein structure: Insights from graph theory. J. Theor. Comput. Chem. 01, 187–211 (2002). doi: 10.1142/S0219633602000117 CrossRefGoogle Scholar
  27. 27.
    Kannan, N., Selvaraj, S., Gromiha, M.M., Vishveshwara, S.: Clusters in alpha/beta barrel proteins: implications for protein structure, function, and folding: a graph theoretical approach. Proteins 43 (2001)Google Scholar
  28. 28.
    Patra, S.M., Vishveshwara, S.: Backbone cluster identification in proteins by a graph theoretical method. Biophysical Chemistry 84, 13–25 (2000)CrossRefGoogle Scholar
  29. 29.
    Albert, R., Jeong, H., Barabasi, A.L.: Error and attack tolerance of complex networks. Nature 406, 378–382 (2000). doi: 10.1038/35019019 CrossRefGoogle Scholar
  30. 30.
    Pabuwal, V., Li, Z.: Comparative analysis of the packing topology of structurally important residues in helical membrane and soluble proteins. Protein Engineering Design and Selection 22, 67–73 (2009)CrossRefGoogle Scholar
  31. 31.
    Shakhnovich, E.I.: Protein design: a perspective from simple tractable models. Folding and Design 3, R45–R58 (1998). doi: 10.1016/S1359-0278(98)00021-2 CrossRefGoogle Scholar
  32. 32.
    Leelananda, S.P., Towfic, F., Jernigan, R.L., Kloczkowski, A.: Exploration of the relationship between topology and designability of conformations. Journal of Chemical Physics 134 (2011)Google Scholar
  33. 33.
    Kabsch, W., Sander, C.: Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983)CrossRefGoogle Scholar
  34. 34.
    Lau, K.F., Dill, K.A.: A lattice statistical mechanics model of the conformational and sequence spaces of proteins. Macromolecules 22, 3986–3997 (1989). doi: 10.1021/ma00200a030 CrossRefGoogle Scholar
  35. 35.
    Lipman, D.J., Wilbur, W.J.: Modeling Neutral and Selective Evolution of Protein Folding. Proceedings of the Royal Society of London Series B-Biological Sciences 245 (1991)Google Scholar
  36. 36.
    Vendruscolo, M., Dokholyan, N.V., Paci, E., Karplus, M.: Small-world view of the amino acids that play a key role in protein folding. Phys. Rev. E 65 (2002)Google Scholar
  37. 37.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA Data Mining Software: An Update. SIGKDD Explorations 11 (2009)Google Scholar
  38. 38.
    England, J.L., Shakhnovich, B.E., Shakhnovich, E.I.: Natural selection of more designable folds: A mechanism for thermophilic adaptation. Proceedings of the National Academy of Sciences of the United States of America 100, 8727–8731 (2003)CrossRefGoogle Scholar
  39. 39.
    Dokholyan, N.V., Li, L., Ding, F., Shakhnovich, E.I.: Topological determinants of protein folding. Proceedings of the National Academy of Sciences 99, 8637–8641 (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Sumudu P. Leelananda
    • 4
  • Robert L. Jernigan
    • 1
    • 2
  • Andrzej Kloczkowski
    • 3
    • 4
    Email author
  1. 1.Iowa State UniversityAmesUSA
  2. 2.Baker Center for Bioinformatics and Biological StatisticsAmesUSA
  3. 3.The Ohio State UniversityColumbusUSA
  4. 4.Nationwide Children’s HospitalColumbusUSA

Personalised recommendations