Advertisement

BWM*: A Novel, Provable, Ensemble-Based Dynamic Programming Algorithm for Sparse Approximations of Computational Protein Design

  • Jonathan D. Jou
  • Swati Jain
  • Ivelin Georgiev
  • Bruce R. DonaldEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9029)

Abstract

Current dynamic programming protein design algorithms that exploit the optimal substructure induced by sparse energy functions compute only the Global Minimum Energy Conformation (GMEC). This disproportionately favors the sequence of a single, static conformation and overlooks better sequences with multiple low-energy conformations. We propose a novel, provable, dynamic programming algorithm called Branch-Width Minimization \(^*\) (BWM\(^*\)) to enumerate a gap-free ensemble of conformations in order of increasing energy. Given a branch-decomposition of branch-width \(w\) for an \(n\)-residue protein design with at most \(q\) discrete side-chain conformations per residue, BWM\(^*\) returns the sparse GMEC in O(\(nw^2q^{\frac{3}{2}w}\)) time, and enumerates each additional conformation in O(\(n\log q\)) time. BWM\(^*\) outperforms the classical search algorithm A\(^*\) in 49 of 67 protein design problems, computing the full ensemble or a close approximation up to two orders of magnitude faster. Performance of BWM\(^*\) can be predicted cheaply beforehand, allowing selection of the most efficient algorithm for each design problem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bodlaender, H.L., et al.: Discrete Mathematics 306(3), 337–350 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Chen, C.-Y., et al.: PNAS 106(10), 3764–3769 (2009)CrossRefGoogle Scholar
  3. 3.
    Cook, W., Seymour, P.: INFORMS Jour. 15(3), 233–248 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Desjarlais, J.R., Handel, T.M.: Protein Science 4(10), 2006–2018 (1995)CrossRefGoogle Scholar
  5. 5.
    Desmet, J., et al.: Proteins 48(1), 31–43 (2002)CrossRefGoogle Scholar
  6. 6.
    Donald, B.R.: Algorithms in Structural Molecular Biology. The MIT Press (2011)Google Scholar
  7. 7.
    Fomin, F.V., Thilikos, D.M.: SODA 2003, pp. 168–177. ACM-SIAM (2003)Google Scholar
  8. 8.
    Fleishman, S.J., et al.: PLoS ONE 6(6), e20161 (2011)CrossRefGoogle Scholar
  9. 9.
    Frey, K.M., et al.: PNAS 107(31), 13707–13712 (2010)CrossRefGoogle Scholar
  10. 10.
    Gainza, P., et al.: PLoS Comp. Biology 8(1), e1002335 (2012)CrossRefGoogle Scholar
  11. 11.
    Gainza, P., et al.: Methods in Enzymology 523, 87–107 (2013)CrossRefGoogle Scholar
  12. 12.
    Georgiev, I., et al.: Retrovirology 9(Suppl. 2), P50 (2012)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Georgiev, I., Donald, B.R.: Bioinformatics 23(13), i185–i194 (2007)CrossRefGoogle Scholar
  14. 14.
    Georgiev, I.S., et al.: Jour. of Immunology, 1302515 (2014)Google Scholar
  15. 15.
    Goldstein, R.F.: Biophysical Jour. 66(5), 1335–1340 (1994)CrossRefGoogle Scholar
  16. 16.
    Gorczynski, M.J., et al.: Chem. and Biology 14(10), 1186–1197 (2007)CrossRefGoogle Scholar
  17. 17.
    Hicks, I.V., et al.: INFORMS New Orleans 2005, 129 (2005)Google Scholar
  18. 18.
    Hlineny, P., et al.: The Computer Jour. (2007)Google Scholar
  19. 19.
    Jiang, X., et al.: Protein Science 9(2), 403–416 (2000)CrossRefGoogle Scholar
  20. 20.
    Jones, D.T., et al.: Protein Science 3(4), 567–574 (1994)CrossRefGoogle Scholar
  21. 21.
    Jou, J.D., Jain, S., Georgiev, I., Donald, B.R.: Supplementary Information: BWM*: A Novel, Provable, Ensemble-based Dynamic Programming Algorithm for Sparse Approximations of Computational Protein Design (2015). http://www.cs.duke.edu/donaldlab/Supplementary/recomb15/bwmstar
  22. 22.
    Kaufmann, K.W., et al.: Biochemistry 49(14), 2987–2998 (2010)CrossRefGoogle Scholar
  23. 23.
    Kilambi, K.P., Gray, J.J.: Biophysical Jour. 103(3), 587–595 (2012)CrossRefGoogle Scholar
  24. 24.
    King, C., et al.: PNAS 111(23), 8577–8582 (2014)CrossRefGoogle Scholar
  25. 25.
    Kingsford, C.L., et al.: Bioinformatics 21(7), 1028–1039 (2005)CrossRefGoogle Scholar
  26. 26.
    Koehl, P., Delarue, M.: Jour. of Molecular Biology 239(2), 249–275 (1994)CrossRefGoogle Scholar
  27. 27.
    Kortemme, T., et al.: Jour. of Molecular Biology 326(4), 1239–1259 (2003)CrossRefGoogle Scholar
  28. 28.
    Krivov, G.G., et al.: Proteins 77(4), 778–795 (2009)CrossRefGoogle Scholar
  29. 29.
    Kuhlman, B., Baker, D.: PNAS 97(19), 10383–10388 (2000)CrossRefGoogle Scholar
  30. 30.
    Lazaridis, T., Karplus, M.: Proteins 35(2), 133–152 (1999)CrossRefGoogle Scholar
  31. 31.
    Leach, A.R., Lemon, A.P.: Proteins 33(2), 227–239 (1998)CrossRefGoogle Scholar
  32. 32.
    Leaver-Fay, A., et al.: Pacific Symposium on Biocomputing, 16–27 (2005)Google Scholar
  33. 33.
    Leaver-Fay, A., et al.: Methods in Enzymology 487, 545–574 (2011)CrossRefGoogle Scholar
  34. 34.
    Lee, C., Subbiah, S.: Jour. of Molecular Biology 217(2), 373–388 (1991)CrossRefGoogle Scholar
  35. 35.
    Lilien, R.H., et al.: Jour. of Comp. Biology 12(6), 740–761 (2005)CrossRefGoogle Scholar
  36. 36.
    Lovell, S.C., et al.: Proteins 40(3), 389–408 (2000)CrossRefGoogle Scholar
  37. 37.
    Privett, H.K., et al.: PNAS 109(10), 3790–3795 (2012)CrossRefGoogle Scholar
  38. 38.
    Roberts, K.E., et al.: PLoS Comp. Biology 8(4), e1002477 (2012)CrossRefGoogle Scholar
  39. 39.
    Robertson, T.A., Varani, G.: Proteins 66(2), 359–374 (2007)CrossRefGoogle Scholar
  40. 40.
    Rudicell, R.S., et al.: Jour. of Virology 88(21), 12669–12682 (2014)CrossRefGoogle Scholar
  41. 41.
    Silver, N.W., et al.: Jour. of Chem. Theory and Comp. 9(11), 5098–5115 (2013)CrossRefGoogle Scholar
  42. 42.
    Stevens, B.W., et al.: Biochemistry 45(51), 15495–15504 (2006)CrossRefGoogle Scholar
  43. 43.
    Xu, J., Berger, B.: Jour. of ACM 53, 533–557 (2006)CrossRefMathSciNetGoogle Scholar
  44. 44.
    Zhang, Z., Lange, O.F.: PLoS ONE 8(8), e72096 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jonathan D. Jou
    • 1
  • Swati Jain
    • 1
    • 2
    • 3
  • Ivelin Georgiev
    • 1
    • 4
  • Bruce R. Donald
    • 1
    • 2
    Email author
  1. 1.Department of Computer ScienceDuke UniversityDurhamUSA
  2. 2.Department of BiochemistryDuke University Medical CenterDurhamUSA
  3. 3.Computational Biology and Bioinformatics ProgramDuke UniversityDurhamUSA
  4. 4.Vaccine Research Center, National Institute of Allergy and Infectious DiseasesNational Institutes of Health (NIH)BethesdaUSA

Personalised recommendations