Advertisement

Constructing Structure Ensembles of Intrinsically Disordered Proteins from Chemical Shift Data

  • Huichao Gong
  • Sai Zhang
  • Jiangdian Wang
  • Haipeng Gong
  • Jianyang ZengEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9029)

Abstract

Modeling the structural ensemble of intrinsically disordered proteins (IDPs), which lack fixed structures, is essential in understanding their cellular functions and revealing their regulation mechanisms in signaling pathways of related diseases (e.g., cancers and neurodegenerative disorders). Though the ensemble concept has been widely believed to be the most accurate way to depict 3D structures of IDPs, few of the traditional ensemble-based approaches effectively address the degeneracy problem which occurs when multiple solutions are consistent with experimental data and is the main challenge in the IDP ensemble construction task. In this paper, based on a predefined conformational library, we formalize the structure ensemble construction problem into a least squares framework, which provides the optimal solution when the data constraints outnumber unknown variables. To deal with the degeneracy problem, we further propose a regularized regression approach based on the elastic net technique with the assumption that the weights to be estimated for individual structures in the ensemble are sparse. We have validated our methods through a reference ensemble approach as well as by testing the real biological data of three proteins, including alpha-synuclein, the translocation domain of Colocin N and the K18 domain of Tau protein.

Keywords

Representative Structure Structure Ensemble Chemical Shift Data Degeneracy Problem Backbone Chemical Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allison, J.R., et al.: Journal of the American Chemical Society 131(51), 18314–18326 (2009)CrossRefGoogle Scholar
  2. 2.
    Berman, H.M., et al.: Nucleic Acids Research 28(1), 235–242 (2000)CrossRefGoogle Scholar
  3. 3.
    Brooks, B.R., et al.: Journal of Computational Chemistry 4(2), 187–217 (1983)CrossRefGoogle Scholar
  4. 4.
    Cavalli, A., et al.: Proceedings of the National Academy of Sciences 104(23), 9615–9620 (2007)CrossRefGoogle Scholar
  5. 5.
    Chen, Y., et al.: Biophysical Journal 93(7), 2300–2306 (2007)CrossRefGoogle Scholar
  6. 6.
    Choy, W.-Y., Forman-Kay, J.D.: Journal of Molecular Biology 308(5), 1011–1032 (2001)CrossRefGoogle Scholar
  7. 7.
    Doreleijers, J.F., et al.: Journal of Biomolecular NMR 26(2), 139–146 (2003)CrossRefGoogle Scholar
  8. 8.
    Keith Dunker, A., et al.: Journal of Molecular Graphics and Modelling 19(1), 26–59 (2001)CrossRefGoogle Scholar
  9. 9.
    Jane Dyson, H., Wright, P.E.: Nat. Rev. Mol. Cell Biol. 6(3), 197–208 (2005)Google Scholar
  10. 10.
    Feldman, H.J., Hogue, C.W.V.: Proteins: Structure, Function, and Bioinformatics 39(2), 112–131 (2000)Google Scholar
  11. 11.
    Feldman, H.J., Hogue, C.W.V.: Proteins: Structure, Function, and Bioinformatics 46(1), 8–23 (2002)Google Scholar
  12. 12.
    Fisher, C.K., et al.: Journal of the American Chemical Society 132(42), 14919–14927 (2010)CrossRefGoogle Scholar
  13. 13.
    Fisher, C.K., Stultz, C.M.: Current Opinion in Structural Biology 21(3), 426–431 (2011)Google Scholar
  14. 14.
    Fonseca, R., et al.: Nucleic Acids Research 42(15), 9562–9572 (2014)CrossRefGoogle Scholar
  15. 15.
    Frank, M., Wolfe, P.: Naval Research Logistics Quarterly 3(1–2), 95–110 (1956)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Friedman, J.H., et al.: Journal of Statistical Software 33(1), 1–22 (2010)Google Scholar
  17. 17.
    Ganguly, D., Chen, J.: Journal of Molecular Biology 390(3), 467–477 (2009)CrossRefGoogle Scholar
  18. 18.
    Han, B., et al.: Journal of Biomolecular NMR 50(1), 43–57 (2011)CrossRefGoogle Scholar
  19. 19.
    Hastie, T., et al.: Springer Series in Statistics. Springer New York Inc., New York (2001)Google Scholar
  20. 20.
    Iakoucheva, L.M., et al.: Journal of Molecular Biology 323(3), 573–584 (2002)CrossRefGoogle Scholar
  21. 21.
    Jensen, M.R., et al.: Journal of the American Chemical Society 132(4), 1270–1272 (2010)Google Scholar
  22. 22.
    Karres, J.S., et al.: Cell 131(1), 136–145 (2007)Google Scholar
  23. 23.
    Kuriyan, J., et al.: Journal of Molecular Biology 190(2), 227–254 (1986)CrossRefGoogle Scholar
  24. 24.
    Marsh, J.A., Forman-Kay, J.D.: Journal of Molecular Biology 391(2), 359–374 (2009)CrossRefGoogle Scholar
  25. 25.
    Nodet, G., et al.: Journal of the American Chemical Society 131(49), 17908–17918 (2009)CrossRefGoogle Scholar
  26. 26.
    Ozenne, V., et al.: Bioinformatics 28(11), 1463–1470 (2012)CrossRefGoogle Scholar
  27. 27.
    Phillips, J.C., et al.: Journal of Computational Chemistry 26(16), 1781–1802 (2005)CrossRefGoogle Scholar
  28. 28.
    Recchia, A., et al.: The FASEB Journal 18(6), 617–626 (2004)CrossRefGoogle Scholar
  29. 29.
    Schwieters, C.D., et al.: Progress in Nuclear Magnetic Resonance Spectroscopy 48(1), 47–62 (2006)CrossRefGoogle Scholar
  30. 30.
    Schwieters, C.D., et al.: Journal of Magnetic Resonance 160(1), 65–73 (2003)CrossRefGoogle Scholar
  31. 31.
    Shen, Y., et al.: Proceedings of the National Academy of Sciences 105(12), 4685–4690 (2008)CrossRefGoogle Scholar
  32. 32.
    Simon, N., et al.: Journal of Statistical Software 39(5), 1–13 (2011)Google Scholar
  33. 33.
    Tamiola, K., et al.: Journal of the American Chemical Society 132(51), 18000–18003 (2010)CrossRefGoogle Scholar
  34. 34.
    Tanner, D.E., et al.: Journal of Chemical Theory and Computation 7(11), 3635–3642 (2011)CrossRefGoogle Scholar
  35. 35.
    Terakawa, T., Takada, S.: Biophysical Journal 101(6), 1450–1458 (2011)CrossRefGoogle Scholar
  36. 36.
    Vekrellis, K., Stefanis, L.: Expert Opinion on Therapeutic Targets 16(4), 421–432 (2012)CrossRefGoogle Scholar
  37. 37.
    von Bergen, M., et al.: Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1739(2-3), 158–166 (2005)Google Scholar
  38. 38.
    Wishart, D.S., Nip, A.M.: Biochemistry and Cell Biology 76(2), 153–163 (1998)CrossRefGoogle Scholar
  39. 39.
    Zou, H., Hastie, T.: Journal of the Royal Statistical Society: Series B (Statistical Methodology) 67(2), 301–320 (2005)Google Scholar
  40. 40.
    Gong, H., et al.: Constructing Structure Ensembles of Intrinsically Disordered Proteins from Chemical Shift Data-Supplementary Material (2015). http://iiis.tsinghua.edu.cn/%7ecompbio/papers/recomb15IDPSM.pdf

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Huichao Gong
    • 1
  • Sai Zhang
    • 1
  • Jiangdian Wang
    • 2
  • Haipeng Gong
    • 3
    • 4
  • Jianyang Zeng
    • 1
    • 4
    Email author
  1. 1.Institute for Interdisciplinary Information SciencesTsinghua UniversityBeijingChina
  2. 2.Merck Research LaboratoryBiostatistics and Research Decision Sciences — Asia PacificBeijingChina
  3. 3.School of Life SciencesTsinghua UniversityBeijingChina
  4. 4.MOE Key Laboratory of BioinformaticsTsinghua UniversityBeijingChina

Personalised recommendations