Skip to main content
  • 584 Accesses

Abstract

To monitor NADH in various organs in vivo, it is very critical and important to prepare the animal model according to a standard protocol. The various techniques developed to create optimal contact between the optical probes and the tested organ are presented for the brain, spinal cord, heart, and visceral organs such as kidney and liver. The various factors affecting NADH fluorescence in vivo are described in detail in this chapter.

Typical protocols to run a well-controlled study are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chance B (1952) Spectra and reaction kinetics of respiratory pigments of homogenized and intact cells. Nature (Lond) 169:215–221

    CAS  Google Scholar 

  2. Chance B, Oshino N, Sugano T, Mayevsky A (1973) Basic principles of tissue oxygen determination from mitochondrial signals. Adv Exp Med Biol 37A:277–292

    CAS  PubMed  Google Scholar 

  3. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248(4951):73–76

    CAS  PubMed  Google Scholar 

  4. Huang S, Heikal AA, Webb WW (2002) Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein. Biophys J 82(5):2811–2825. doi:10.1016/S0006-3495(02)75621-X

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Levene MJ, Dombeck DA, Kasischke KA, Molloy RP, Webb WW (2004) In vivo multiphoton microscopy of deep brain tissue. J Neurophysiol 91(4):1908–1912. doi:10.1152/jn.01007.2003

    PubMed  Google Scholar 

  6. Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2(12):932–940. doi:10.1038/nmeth818

    CAS  PubMed  Google Scholar 

  7. Cerdan S, Rodrigues TB, Sierra A, Benito M, Fonseca LL, Fonseca CP, Garcia-Martin ML (2006) The redox switch/redox coupling hypothesis. Neurochem Int 48(6-7):523–530. doi:10.1016/j.neuint.2005.12.036

    CAS  PubMed  Google Scholar 

  8. Takano T, Tian GF, Peng W, Lou N, Lovatt D, Hansen AJ, Kasischke KA, Nedergaard M (2007) Cortical spreading depression causes and coincides with tissue hypoxia. Nat Neurosci 10(6):754–762. doi:10.1038/nn1902

    CAS  PubMed  Google Scholar 

  9. Carlson AP, Carter RE, Shuttleworth CW (2012) Vascular, electrophysiological, and metabolic consequences of cortical spreading depression in a mouse model of simulated neurosurgical conditions. Neurol Res 34(3):223–231. doi:10.1179/1743132811Y.0000000077

    PubMed Central  PubMed  Google Scholar 

  10. Tiede L, Steyger PS, Nichols MG, Hallworth R (2009) Metabolic imaging of the organ of corti–a window on cochlea bioenergetics. Brain Res 1277:37–41. doi:10.1016/j.brainres.2009.02.052

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Yu Q, Heikal AA (2009) Two-photon autofluorescence dynamics imaging reveals sensitivity of intracellular NADH concentration and conformation to cell physiology at the single-cell level. J Photochem Photobiol B 95(1):46–57. doi:10.1016/j.jphotobiol.2008.12.010

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Guan Y, Worrell RT, Pritts TA, Montrose MH (2009) Intestinal ischemia-reperfusion injury: reversible and irreversible damage imaged in vivo. Am J Physiol Gastrointest Liver Physiol 297(1):G187–G196. doi:10.1152/ajpgi.90595.2008

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Hall AM, Rhodes GJ, Sandoval RM, Corridon PR, Molitoris BA (2013) In vivo multiphoton imaging of mitochondrial structure and function during acute kidney injury. Kidney Int 83(1):72–83. doi:10.1038/ki.2012.328

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Baraghis E, Devor A, Fang Q, Srinivasan VJ, Wu W, Lesage F, Ayata C, Kasischke KA, Boas DA, Sakadzic S (2011) Two-photon microscopy of cortical NADH fluorescence intensity changes: correcting contamination from the hemodynamic response. J Biomed Opt 16(10):106003. doi:10.1117/1.3633339

    PubMed Central  PubMed  Google Scholar 

  15. Kasischke KA, Lambert EM, Panepento B, Sun A, Gelbard HA, Burgess RW, Foster TH, Nedergaard M (2011) Two-photon NADH imaging exposes boundaries of oxygen diffusion in cortical vascular supply regions. J Cereb Blood Flow Metab 31(1):68–81. doi:10.1038/jcbfm.2010.158

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Polesskaya O, Sun A, Salahura G, Silva JN, Dewhurst S, Kasischke K (2012) Detection of microregional hypoxia in mouse cerebral cortex by two-photon imaging of endogenous NADH fluorescence. J Vis Exp 60:pii. 3466. doi: 10.3791/3466

  17. Yaseen MA, Sakadzic S, Wu W, Becker W, Kasischke KA, Boas DA (2013) In vivo imaging of cerebral energy metabolism with two-photon fluorescence lifetime microscopy of NADH. Biomed Opt Express 4(2):307–321. doi:10.1364/BOE.4.000307

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Krasieva TB, Stringari C, Liu F, Sun CH, Kong Y, Balu M, Meyskens FL, Gratton E, Tromberg BJ (2013) Two-photon excited fluorescence lifetime imaging and spectroscopy of melanins in vitro and in vivo. J Biomed Opt 18(3):31107. doi:10.1117/1.JBO.18.3.031107

    PubMed  Google Scholar 

  19. Balu M, Mazhar A, Hayakawa CK, Mittal R, Krasieva TB, Konig K, Venugopalan V, Tromberg BJ (2013) In vivo multiphoton NADH fluorescence reveals depth-dependent keratinocyte metabolism in human skin. Biophys J 104(1):258–267. doi:10.1016/j.bpj.2012.11.3809

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Drozdowicz-Tomsia K, Anwer AG, Cahill MA, Madlum KN, Maki AM, Baker MS, Goldys EM (2014) Multiphoton fluorescence lifetime imaging microscopy reveals free-to-bound NADH ratio changes associated with metabolic inhibition. J Biomed Opt 19(8):086016. doi:10.1117/1.JBO.19.8.086016

    PubMed  Google Scholar 

  21. Chance B, Legallias V, Sorge J, Graham N (1975) A versatile time-sharing multichannel spectrophotometer reflectometer and fluorometer. Anal Biochem 66:498–514

    CAS  PubMed  Google Scholar 

  22. Mayevsky A (1984) Brain NADH redox state monitored in vivo by fiber optic surface fluorometry. Brain Res Rev 7:49–68

    CAS  Google Scholar 

  23. Ince C, Coremans JMCC, Bruining HA (1992) In vivo NADH fluorescence. In: Erdmann W, Bruley DF (eds) Adv Exp Med Biol. Plenum, New York, pp 277–296

    Google Scholar 

  24. Mayevsky A, Blum Y, Dekel N, Deutsch A, Halfon R, Kremer S, Pewzner E, Sherman E, Barnea O (2006) The CritiView—a new fiber optic-based optical device for the assessment of tissue vitality. Proc SPIE 6083:0Z-1–0Z-9

    Google Scholar 

  25. Duysens LNM, Amesz J (1957) Fluorescence spectrophotometry of reduced phosphopyridine nucleotide in intact cells in the near-ultraviolet and visible region. Biochim Biophys Acta 24:19–26

    CAS  PubMed  Google Scholar 

  26. Chance B, Legallias V (1959) Differential microfluorimeter for the localization of reduced pyridine nucleotide in living cells. Rev Sci Instrum 30(8):732–735

    CAS  Google Scholar 

  27. Chance B, Jobsis F (1959) Changes in fluorescence in a frog sartorius muscle following a twitch. Nature (Lond) 184:195–196

    CAS  Google Scholar 

  28. Chance B (1959) The response of mitochondria to muscular contraction. Ann NY Acad Sci 81:477–489

    CAS  PubMed  Google Scholar 

  29. Chance B, Cohen P, Jobsis F, Schoener B (1962) Intracellular oxidation-reduction states in vivo. Science 137:499–508

    CAS  PubMed  Google Scholar 

  30. Chance B, Legallias V, Schoener B (1962) Metabolically linked changes in fluorescence emission spectra of cortex of rat brain, kidney and adrenal gland. Nature (Lond) 195:1073–1075

    CAS  Google Scholar 

  31. Chance B, Schoener B (1963) Control of oxidation-reduction state of NADH in the liver of anesthetized rats. Symp Regul Enzyme Act Synth Norm Neoplast Tissues Proc:169–185

    Google Scholar 

  32. Chance B, Legallias V, Schoener B (1963) Combined fluorometer and double-beam spectrophotometer for reflectance measurements. Rev Sci Instrum 34(12):1307–1311

    CAS  Google Scholar 

  33. Chance B, Mayer D, Rossini L (1970) A time-sharing instrument for direct readout of oxidation- reduction states in intracellular compartments of cardiac tissue. IEEE Trans Biomed Eng BME-17:118–121

    Google Scholar 

  34. Chance B, Graham N, Mayer D (1971) A time sharing fluorometer for the readout of intracellular oxidation-reduction states of NADH and flavoprotein. Rev Sci Instrum 42(7):951–957

    CAS  PubMed  Google Scholar 

  35. Chance B (1966) The identification and control of metabolic states. Genootschap ter Bevordering van Natuur-, Genees-, en Heelkunde te Amsterdam:5–37

    Google Scholar 

  36. Chance B, Schoener B (1965) A correlation of absorption and fluorescence changes in ischemia of the rat liver, in vivo. Biochem Z 341:340–345

    CAS  Google Scholar 

  37. Chance B, Williamson JR, Jamieson D, Schoener B (1965) Properties and kinetics of reduced pyridine nucleotide fluorescence of the isolated and in vivo rat heart. Biochem Z 341:357–377

    Google Scholar 

  38. Dora E, Kovach AGB (1982) Effect of acute arterial hypo- and hypertension on cerebrocortical NAD/NADH redox state and vascular volume. J CBF Metab 2:209–219

    CAS  Google Scholar 

  39. Dora E (1984) A simple cranial window technique for optical monitoring of cerebrocortical microcirculation and NAD/NADH redox state. Effect of mitochondrial electron transport inhibitors and anoxic anoxia. J Neurochem 42:101–108

    CAS  PubMed  Google Scholar 

  40. Ginsberg MD, Reivich M, Frinak S, Harbig K (1976) Pyridine nucleotide redox state and blood flow of the cerebral cortex following middle cerebral artery occlusion in the cat. Stroke 7(2):125–131

    CAS  PubMed  Google Scholar 

  41. Harbig K, Chance B, Kovach AGB, Reivich M (1976) In vivo measurement of pyridine nucleotide fluorescence from cat brain cortex. J Appl Physiol 41(4):480–488

    CAS  PubMed  Google Scholar 

  42. Jobsis FF (1964) Basic processes in cellular respiration. In: Fenn WO, Rabn H (eds) Handbook of physiology: respiration, vol 2, 1st edn. American Physiological Society, Bethesda, MD, pp 63–124

    Google Scholar 

  43. Jobsis FF, Duffield JC (1967) Oxidative and glycolytic recovery metabolism in muscle. Fluorometric observations on their relative contributions. J Gen Physiol 50:1009–1047

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Jobsis FF, O’Connor M, Vitale A, Vreman H (1971) Intracellular redox changes in functioning cerebral cortex. I. Metabolic effects of epileptiform activity. J Neurophysiol 3465:735–749

    Google Scholar 

  45. Jobsis FF, O’Connor MJ, Rosenthal M, Van Buren JM (1971) Fluorometric monitoring of metabolic activity in the intact cerebral cortex. In: Somjen GG (ed) Excerpta Medica International Congress series, No. 253. Paris, France, pp 18–26

    Google Scholar 

  46. Rosenthal M, Martel D, LaManna JC, Jobsis FF (1976) In situ studies of oxidative energy metabolism during transient cortical ischemia in cats. Exp Neurol 50:477–494

    CAS  PubMed  Google Scholar 

  47. Rosenthal M, Jobsis FF (1971) Intracellular redox changes in functioning cerebral cortex. II. Effects of direct cortical stimulation. J Neurophysiol 34:750–762

    CAS  PubMed  Google Scholar 

  48. Schuette WH, Lewis DV, O’Connor M, Van Buren JM (1976) The design and operation of a dual-beal long-focal-length fluorometer for monitoring the oxidative metabolism in vivo. Med Biol Eng 14(2):235–238

    CAS  PubMed  Google Scholar 

  49. Gosalvez M, Thurman RG, Chance B, Reinhold H (1972) Mammary tumours in vivo demonstrated by fluorescence of pyridine nucleotide. Br J Radiol 45:510–514

    CAS  PubMed  Google Scholar 

  50. Gosalvez M, Thurman RG, Chance B, Reinhold HS (1972) Indication of hypoxic areas in tumours from in vivo NADH fluorescence. Eur J Cancer 8:267–269

    CAS  PubMed  Google Scholar 

  51. Anderson RE (1975) Instrumentation for in vivo cerebral NADH studies in squirrel monkey. IEEE Trans Biomed Eng BME-22(3):220–224

    Google Scholar 

  52. Anderson RE (1978) Comparison of dark-field and bright-field incident illumination for in vivo measurements of reduced pyridine nucleotides. Anal Biochem 91:496–508

    CAS  PubMed  Google Scholar 

  53. Sundt TM, Anderson RE (1975) Reduced nicotinamide adenine dinucleotide fluorescence and cortical blood flow in ischemic and nonischemic squirrel monkey cortex. I. Animal preparation, instrumentation, and validity of model. Stroke 6:270–278

    CAS  PubMed  Google Scholar 

  54. Kohen E, Kohen C, Thorell B, Akerman L (1968) Kinetics of the fluorescence response to microelectrophoretically introduced metabolites in the single living cell. Biochim Biophys Acta 158:185–188

    CAS  PubMed  Google Scholar 

  55. Kohen E, Kohen C, Thorell B, Schachtschabel D (1975) Multisite analysis of metabolic transients in single living cells by multichannel microfluorometry. Mikrochim Acta 1:223–236

    Google Scholar 

  56. Lavine SD, Masri LS, Levy ML, Giannotta SL (1997) Temporary occlusion of the middle cerebral artery in intracranial aneurysm surgery: time limitation and advantage of brain protection. J Neurosurg 87(6):817–824. doi:10.3171/jns.1997.87.6.0817

    CAS  PubMed  Google Scholar 

  57. Balaban RS, Mandel LJ (1988) Metabolic substrate utilization by rabbit proximal tubule. An NADH fluorescence study. Am J Physiol 254:F407–F416

    CAS  PubMed  Google Scholar 

  58. Boldt M, Harbig K, Weidemann G, Lubbers DW (1980) A sensitive dual wavelength microspectrophotometer for the measurement of tissue fluorescence and reflectance. Pflugers Arch Eur J Physiol 385:167–173

    CAS  Google Scholar 

  59. Chance B, Legallias V, Graham N, Oshino N (1972) The intracellular redox states of HeLa cells under conditions suitable for radiobiological studies. Br J Pharmacol 45:59–65

    CAS  Google Scholar 

  60. Mayer D, Chance B, Legallias V (1971) Time-sharing in spectrophotometry and fluorometry. Probes of structure and function of macromolecules and membranes. In: Probes and Membranes Function, vol 1. Academic Press, New York, pp 527–534

    Google Scholar 

  61. Hassinen IE (1986) Reflectance spectrophotometric and surface fluorometric methods for measuring the redox state of nicotinamide nucleotides and flavins in intact tissues. Methods Enzymol 123:311–320

    CAS  PubMed  Google Scholar 

  62. Jobsis FF, Stainsby WN (1968) Oxidation of NADH during contractions of circulated mammalian skeletal muscle. Respir Physiol 4:292–300

    CAS  PubMed  Google Scholar 

  63. Jobsis F, Legallias V, O’Connor M (1966) A regulated differential fluorometer for the assay of oxidative metabolism in intact tissues. IEEE Trans Biomed Eng BME-13:93–99

    Google Scholar 

  64. Gyulai L, Dora E, Kovach AGB (1982) NAD/NADH: redox state changes on cat brain cortex during stimulation and hypercapnia. Am J Physiol 243(4):H619–H627

    CAS  PubMed  Google Scholar 

  65. Mayevsky A, Chance B (1973) A new long-term method for the measurement of NADH fluorescence in intact rat brain with implanted cannula. Adv Exp Med Biol 37A:239–244

    CAS  PubMed  Google Scholar 

  66. Mayevsky A, Chance B (1976) The effect of decapitation on the oxidation-reduction state of NADH and ECoG in the brain of the awake rat. Adv Exp Med Biol 75:307–312

    CAS  PubMed  Google Scholar 

  67. Mayevsky A, Chance B (1975) Metabolic responses of the awake cerebral cortex to anoxia hypoxia spreading depression and epileptiform activity. Brain Res 98:149–165

    CAS  PubMed  Google Scholar 

  68. Mayevsky A, Zeuthen T, Chance B (1974) Measurements of extracellular potassium, ECoG and pyridine nucleotide levels during cortical spreading depression in rats. Brain Res 76:347–349

    CAS  PubMed  Google Scholar 

  69. Mayevsky A, Chance B (1974) Repetitive patterns of metabolic changes during cortical spreading depression of the awake rat. Brain Res 65:529–533

    CAS  PubMed  Google Scholar 

  70. Mayevsky A (1975) The effect of trimethadione on brain energy metabolism and EEG activity of the conscious rat exposed to HPO. J Neurosci Res 1:131–142

    CAS  PubMed  Google Scholar 

  71. Franke H, Barlow CH, Chance B (1980) Fluorescence of pyridine nucleotide and flavoproteins as an indicator of substrate oxidation and oxygen demand of the isolated perfused rat kidney. Int J Biochem 12:269–275

    CAS  PubMed  Google Scholar 

  72. Chance B, Mayevsky A, Goodwin C, Mela L (1974) Factors in oxygen delivery to tissue. Microvasc Res 8:276–282

    CAS  PubMed  Google Scholar 

  73. Bickler PE, Litt L, Severinghaus JW (1988) Effects of acetazolamide on cerebrocortical NADH and blood volume. J Appl Physiol 65(1):428–433

    CAS  PubMed  Google Scholar 

  74. Bickler PE, Koh SO, Severinghaus JW (1989) Effects of hypoxia and hypocapnia on brain redox balance in ducks. Am J Physiol 257:R132–R135

    CAS  PubMed  Google Scholar 

  75. Bissonnette B, Bickler PE, Gregory GA, Severinghaus JW (1991) Intracranial pressure and brain redox balance in rabbits. Can J Anaesth 38(5):654–659

    CAS  PubMed  Google Scholar 

  76. Franke H, Barlow CH, Chance B (1976) Oxygen delivery in perfused rat kidney: NADH fluorescence and renal functional state. Am J Physiol 231(4):1082–1089

    CAS  PubMed  Google Scholar 

  77. Franke H, Barlow CH, Chance B (1980) Surface fluorescence of reduced pyridine nucleotide of the perfused rat kidney: interrelation between metabolic and functional states. Contrib Nephrol 19:240–247

    CAS  PubMed  Google Scholar 

  78. Mayevsky A, Chance B (1983) Multisite measurements of NADH redox state from cerebral cortex of the awake animal. Adv Exp Med Biol 159:143–155

    CAS  PubMed  Google Scholar 

  79. Mayevsky A (1978) Shedding light on the awake brain. In: Dutton PL, Leigh J, Scarpa A (eds) Frontiers in bioenergetics from electrons to tissues, vol 2. Academic, New York, pp 1467–1476

    Google Scholar 

  80. Mayevsky A (1993) Biochemical and physiological activities of the brain as in vivo markers of brain pathology. In: Bernstein EF, Callow AD, Nicolaides AN, Shifrin EG (eds) Cerebral revascularization. Med-Orion, Springfield Lakes, pp 51–69

    Google Scholar 

  81. Mayevsky A (1976) Brain energy metabolism of the conscious rat exposed to various physiological and pathological situations. Brain Res 113:327–338

    CAS  PubMed  Google Scholar 

  82. Kedem J, Mayevsky A, Sonn J, Acad B (1981) An experimental approach for evaluation of the O2 balance in local myocardial regions in vivo. Q J Exp Physiol 66:501–514

    CAS  PubMed  Google Scholar 

  83. Acad B, Sonn J, Furman E, Kedem J (1986) Variations in left and right ventricular oxygen balance produced by paired electrical stimulations. Arch Int Physiol Biochim 94:37–43

    CAS  PubMed  Google Scholar 

  84. Acad B, Sonn J, Furman E, Scheinowitz M, Kedem J (1987) Specific effects of nitroprusside on myocardial O2 balance following coronary ligation in the dog heart. J Cardiovasc Pharmacol 9:79–86

    CAS  PubMed  Google Scholar 

  85. Barbiro-Micahely E, Zurovsky Y, Mayevsky A (1998) Real time monitoring of rat liver energy state during ischemia. Microvasc Res 56(3):253–260

    Google Scholar 

  86. Zurovsky Y, Sonn J (1992) Fiber optic surface fluorometry-reflectometry technique in the renal physiology of rats. J Basic Clin Physiol Pharmacol 3(4):343–358

    CAS  PubMed  Google Scholar 

  87. Zurovsky Y, Gispaan I (1995) Antioxidants attenuate endotoxin-induced acute renal failure in rats. Am J Kidney Dis 25(1):51–57

    CAS  PubMed  Google Scholar 

  88. Mayevsky A, Nakache R, Merhav H, Luger-Hamer M, Sonn J (2000) Real time monitoring of intraoperative allograft vitality. Transplant Proc 32:684–685

    CAS  PubMed  Google Scholar 

  89. Mayevsky A, Sonn J, Luger-Hamer M, Nakache R (2003) Real time assessment of organ vitality during the transplantation procedure. Transplant Rev 17:96–116

    Google Scholar 

  90. Mayevsky A, Chance B (1982) Intracellular oxidation-reduction state measured in situ by a multichannel fiber-optic surface fluorometer. Science 217:537–540

    CAS  PubMed  Google Scholar 

  91. Mayevsky A, Breuer Z (1992) Brain vasculature and mitochondrial responses to ischemia in gerbils. I. Basic anatomical patterns and biochemical correlates. Brain Res 58:242–250

    Google Scholar 

  92. Breuer Z, Mayevsky A (1992) Brain vasculature and mitochondrial responses to ischemia in gerbils: II. Strain differences and statistical evaluation. Brain Res 598:251–256

    CAS  PubMed  Google Scholar 

  93. Kraut A, Barbiro-Michaely E, Zurovsky Y, Mayevsky A (2003) Multiorgan monitoring of hemodynamic and mitochondrial responses to anoxia and cardiac arrest in the rat. Adv Exp Med Biol 510:299–304

    CAS  PubMed  Google Scholar 

  94. Kraut A, Barbiro-Michaely E, Mayevsky A (2004) Differential effects of norepinephrine on brain and other less vital organs detected by a multisite multiparametric monitoring system. Med Sci Monit 10(7):BR215–BR220

    CAS  PubMed  Google Scholar 

  95. Renault G, Raynal E, Sinet M, Muffat-Joly M, Berthier J-P, Cornillault J, Godard B, Pocidalo J-J (1984) In situ double-beam NADH laser fluorometry: choice of a reference wavelength. Am J Physiol 246:H491–H499

    CAS  PubMed  Google Scholar 

  96. Renault G, Raynal E, Sinet M, Berthier J-P, Godard B, Cornillault J (1982) A laser fluorimeter for direct cardiac metabolism investigation. Optics Laser Technol 14:143–148

    CAS  Google Scholar 

  97. Renault G, Raynal E, Cornillault J (1983) Cancelling of Fresnel reflection in in situ, double beam laser, fluorimetry using a single optical fiber. J Biomed Eng 5:243–247

    CAS  PubMed  Google Scholar 

  98. Renault G, Sinet M, Muffat-Joly M, Cornillault J, Pocidalo J-J (1985) In situ monitoring of myocardial metabolism by laser fluorimetry: relevance of a test of local ischemia. Lasers Surg Med 5:111–122

    CAS  PubMed  Google Scholar 

  99. Renault G, Muffat-Joly M, Polianski J, Hardy RI, Boutineau J-L, Duvent J-L, Pocidalo J-J (1987) NADH in situ laser fluorimetry: effect of pentobarbital on continuously monitored myocardial redox state. Lasers Surg Med 7:339–346

    CAS  PubMed  Google Scholar 

  100. Pfeifer L, Paul R, Yalcin E, Marx U, Konig F, Fink F (1996) A time-gated laser spectrometer using optical fibres for detecting fluorescent biomolecules in cells and tissue. In: Gonzalez-Mora JL, Borges R, Mas M (eds) Methodological and technical developments. University of La Laguna, Santa Cruz de Tenerife, Spain, pp 42–43

    Google Scholar 

  101. Rex A, Schmalziguag K, Fink F, Fink H (1996) In vivo monitoring of NADH using laser-induced fluorescence spectroscopy. In: Gonzalez-Mora JL, Borges R, Mas M (eds) Methodological and technical developments. University of La Laguna, Santa Cruz de Tenerife, Spain, pp 44–45

    Google Scholar 

  102. Rex A, Pfeifer L, Fink F, Fink H (1999) Cortical NADH during pharmacological manipulations of the respiratory chain and spreading depression in vivo. J Neurosci Res 57(3):359–370

    CAS  PubMed  Google Scholar 

  103. Thorsrud BA, Harris C (1993) Real time micro-fiberoptic monitoring of endogenous fluorescence in the rat conceptus during hypoxia. Teratology 48:343–353

    CAS  PubMed  Google Scholar 

  104. Thorsrud BA, Harris C (1995) Real time microfiberoptic redox fluorometry: modulation of the pyridine nucleotide status of the organogenesis-stage rat visceral yolk sac with cyanide and alloxan. Toxicol Appl Pharmacol 135:237–245

    CAS  PubMed  Google Scholar 

  105. Ji S, Chance B, Nishiki K, Smith T, Rich T (1979) Micro-light guides: a new method for measuring tissue fluorescence and reflectance. Am J Physiol 236(3):C144–C156

    CAS  PubMed  Google Scholar 

  106. Ji S, Lemasters JJ, Thurman RG (1980) A non-invasive method to study metabolic events within sublobular regions of hemoglobin-free perfused liver. FEBS Lett 113(1):37–41

    CAS  PubMed  Google Scholar 

  107. Ji S, Lemasters JJ, Christenson V, Thurman RG (1982) Periportal and pericentral pyridine nucleotide fluorescence from the surface of the perfused liver: evaluation of the hypothesis that chronic treatment with ethanol produces pericentral hypoxia. Proc Natl Acad Sci USA 79:5415–5419

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Raman RN, Pivetti CD, Matthews DL, Troppmann C, Demos SG (2009) A non-contact method and instrumentation to monitor renal ischemia and reperfusion with optical spectroscopy. Opt Express 17:894–905

    CAS  PubMed  Google Scholar 

  109. Ekbal NJ, Mayevsky A, Singer M (2013) Heterogeneous physiological responses to an identical severe hypoxaemic insult. Intensive Care Med 39:S482

    Google Scholar 

  110. Ekbal NJ, Mayevsky A, Singer M (2012) Changes in skeletal muscle NADH redox state, tissue oxygenation and microvascular blood flow during graded hypoxemia. Intensive Care Med 38:0224

    Google Scholar 

  111. Ekbal NJ, Mayevsky A, Singer M (2013) Changes in skeletal muscle NADH redox state are an early predictor of mortality from haemorrhagic shock. Intensive Care Med 39:0963

    Google Scholar 

  112. Ekbal NJ, Mayevsky A, Singer M (2012) Changes in skeletal muscle NADH redox state, tissue oxygenation and microvascular blood flow during graded haemorrhage. Intensive Care Med 38:0993

    Google Scholar 

  113. Sonn J, Acad B, Mayevsky A, Kedem J (1981) Effect of coronary vasodilation produced by hypopnea upon regional myocardial oxygen balance. Arch Int Physiol Biochim 89:445–455

    CAS  PubMed  Google Scholar 

  114. Osbakken M, Mayevsky A (1996) Multiparameter monitoring and analysis of in vivo ischemic and hypoxic heart. J Basic Clin Physiol Pharmacol 7:97–113

    CAS  PubMed  Google Scholar 

  115. Osbakken M, Mayevsky A, Ponomarenko I, Zhang D, Duska C, Chance B (1989) Combined in vivo NADH fluorescence and 31P-NMR to evaluate myocardial oxidative phosphorylation. J Appl Cardiol 4:305–313

    Google Scholar 

  116. Dora E, Kovach AGB (1978) Factors influencing the correction factor used to eliminate the apparent NADH fluorescence changes caused by alterations in cerebrocortical blood content. Adv Exp Med Biol 92:113–118

    Google Scholar 

  117. Dora E, Chance B, Kovach AGB, Silver IA (1975) Carbon monoxide-induced localized toxic anoxia in the rat brain cortex. J Appl Physiol 39(5):875–878

    CAS  PubMed  Google Scholar 

  118. Dora E, Kovach AGB (1983) Effect of topically administered epinephrine, norepinephrine, and acetylcholine on cerebrocortical circulation and the NAD/NADH redox state. J CBF Metab 3:161–169

    CAS  Google Scholar 

  119. Mayevsky A, Flamm ES, Pennie W, Chance B (1991) A fiber optic based multiprobes system for intraoperative monitoring of brain functions. SPIE 1431:303–313

    Google Scholar 

  120. Mayevsky A, Doron A, Meilin S, Manor T, Ornstein E, Ouaknine GE (1999) Brain viability and function analyzer: multiparametric real-time monitoring in neurosurgical patients. Acta Neurochir Suppl (Wien) 75:63–66

    CAS  Google Scholar 

  121. Mayevsky A, Manor T, Meilin S, Doron A, Ouaknine GE (1998) Real-time multiparametric monitoring of the injured human cerebral cortex—a new approach. Acta Neurochir Suppl (Wien) 71:78–81

    CAS  Google Scholar 

  122. Mayevsky A, Mizawa I, Sloviter HA (1981) Surface fluorometry and electrical activity of the isolated rat brain perfused with artificial blood. Neurol Res 3:307–316

    CAS  PubMed  Google Scholar 

  123. Lipton P (1973) Effects of membrane depolarization on nicotinamide nucleotide fluorescence in brain slices. Biochem J 136:999–1009

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Mayevsky A, Lebourdais S, Chance B (1980) The interrelation between brain PO2 and NADH oxidation–reduction state in the gerbil. J Neurosci Res 5:173–182

    CAS  PubMed  Google Scholar 

  125. Mayevsky A, Duckrow RB, Yoles E, Zarchin N, Kanshansky D (1990) Brain mitochondrial redox state, tissue hemodynamic and extracellular ion responses to four-vessel occlusion and spreading depression in the rat. Neurol Res 12:243–248

    CAS  PubMed  Google Scholar 

  126. Zarchin N, Mayevsky A (1981) The effects of age on the metabolic and electrical responses to decapitation in the awake and anesthetized rat brain. Mech Ageing Dev 16:285–294

    CAS  PubMed  Google Scholar 

  127. Mayevsky A (1983) Metabolic, ionic and electrical responses to experimental epilepsy in the awake rat. In: Baldy M, Moulinier DH, Ingvar DH, Meldrum BS (eds) Proceedings, First international congress on cerebral blood flow, metabolism and epilepsy. John Libbey, London, pp 263–270

    Google Scholar 

  128. Kramer RS, Pearlstein RD (1979) Cerebral cortical microfluorometry at isosbestic wavelengths for correction of vascular artifact. Science 205:693–696

    CAS  PubMed  Google Scholar 

  129. Rahmer H, Kessler M (1973) Influence of hemoglobin concentration in perfusate and in blood on fluorescence of pyridine nucleotides (NADH and NADPH) of rat liver. Adv Exp Med Biol 37A:377–382

    CAS  PubMed  Google Scholar 

  130. Coremans JMCC, Ince C, Bruining HA, Puppels GJ (1997) (Semi-)quantitative analysis of reduced nicotinamide adenine dinucleotide fluorescence images of blood-perfused rat heart. Biophys J 72:1849–1860

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Mills SA, Jobsis FF, Seaber AV (1977) A fluorometric study of oxidative metabolism in the in vivo canine heart during acute ischemia and hypoxia. Ann Surg 186:193–200

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Mayevsky A (1978) Ischemia in the brain: the effects of carotid artery ligation and decapitation on the energy state of the awake and anesthetized rat. Brain Res 140:217–230

    CAS  PubMed  Google Scholar 

  133. Mayevsky A, Jamieson D, Chance B (1974) Oxygen poisoning in the unanesthetized brain: correlation of the oxidation-reduction state of pyridine nucleotide with electrical activity. Brain Res 76:481–491

    CAS  PubMed  Google Scholar 

  134. Mayevsky A, Shaya B (1980) Factors affecting the development of hyperbaric oxygen toxicity in the awake rat brain. J Appl Physiol 49:700–707

    CAS  PubMed  Google Scholar 

  135. Dora E, Gyulai L, Kovach AGB (1984) Determinants of brain activation-induced cortical NAD/NADH responses in vivo. Brain Res 299:61–72

    CAS  PubMed  Google Scholar 

  136. Ji S, Chance B, Stuart BH, Nathan R (1977) Two-dimensional analysis of the redox state of the rat cerebral cortex in vivo by NADH fluorescence photography. Brain Res 119:357–373

    CAS  PubMed  Google Scholar 

  137. Kobayashi S, Nishiki K, Kaede K, Ogata E (1971) Optical consequences of blood substitution on tissue oxidation–reduction state microfluorometry. J Appl Physiol 31(1):93–96

    CAS  PubMed  Google Scholar 

  138. Koretsky AP, Katz LA, Balaban RS (1987) Determination of pyridine nucleotide fluorescence from the perfused heart using an internal standard. Am J Physiol 253:H856–H862

    CAS  PubMed  Google Scholar 

  139. Vern B, Whitehouse WC, Schuette WH (1975) Sodium fluorescein: a new reference for NADH fluorometry. Brain Res 98:405–409

    CAS  PubMed  Google Scholar 

  140. Balaban RS, Mandel LJ, Soltoff SP, Storey JM (1980) Coupling of active ion transport and aerobic respiratory rate in isolated renal tubules. Proc Natl Acad Sci USA 77(1):447–451

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Mayevsky A, Ziv I (1991) Oscillations of cortical oxidative metabolism and microcirculation in the ischaemic brain. Neurol Res 13(1):39–47

    CAS  PubMed  Google Scholar 

  142. Bradley RS, Thorniley MS (2005) A review of attenuation correction techniques for tissue fluorescence. J R Soc Interface 3:1–13

    PubMed Central  Google Scholar 

  143. Mayevsky A, Rogatsky G (2007) Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies. Am J Physiol Cell Physiol 292:C615–C640

    CAS  PubMed  Google Scholar 

  144. Mayevsky A, Barbiro-Michaely E (2013) Shedding light on mitochondrial function by real time monitoring of NADH fluorescence: I. Basic methodology and animal studies. J Clin Monit Comput 27:1–34. doi:10.1007/s10877-012-9414-5

    PubMed  Google Scholar 

  145. Simonovich M, Barbiro-Michaely E, Mayevsky A (2008) Real-time monitoring of mitochondrial NADH and microcirculatory blood flow in the spinal cord. Spine 33:2495–2502. doi:10.1097/BRS.0b013e3181859a92

    PubMed  Google Scholar 

  146. Chance B (1964) Continuous recording of intracellular reduced pyridine nucleotide changes in skeletal muscle in vivo. Tex Rep Biol Med 22(1):836–841

    PubMed  Google Scholar 

  147. Barbiro-Michaely E, Tolmasov M, Rinkevich-Shop S, Sonn J, Mayevsky A (2007) Can the “brain-sparing effect” be detected in a small-animal model? Med Sci Monit 13(10):Br211–Br219

    PubMed  Google Scholar 

  148. Mayevsky A, Rogatsky GG, Sonn J (2000) New multiparametric monitoring approach for real-time evaluation of drug tissue interaction in vivo. Drug Dev Res 50:457–470

    CAS  Google Scholar 

  149. Chance B, Schoener B (1962) Control of oxidation-reduction state of NADH in the liver of anesthetized rats. Symposium on regulation of enzyme activating synthesis of normal neoplastic tissues. pp 169–185

    Google Scholar 

  150. Mayevsky A (1992) Interrelation between intracellular redox state and ion homeostasis in the brain in vivo. In: Frank K, Kessler M (eds) Quantitative spectroscopy in tissues. Verlasgruppe, Frankfurt am Main, pp 155–168

    Google Scholar 

  151. Orr C-S, Arthurs SC (1992) Tissue viability measurement by in situ fluorometry. ASAIO Trans 38:M412–M415

    CAS  Google Scholar 

  152. Cordeiro PG, Kirschner RE, Hu Q-Y, Chiao JJC, Savage H, Alfano RR, Hoffman LA, Hidalgo DA (1995) Ultraviolet excitation fluorescence spectroscopy: a noninvasive method for the measurement of redox changes in ischemic myocutaneous flaps. Plast Reconstr Surg 96:673–680

    CAS  PubMed  Google Scholar 

  153. Mayevsky A, Manor T, Pevzner E, Deutsch A, Etziony R, Dekel N, Jaronkin A (2004) Tissue spectroscope: a novel in vivo approach to real time monitoring of tissue vitality. J Biomed Opt 9(5):1028–1045

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mayevsky, A. (2015). Technological Aspects of NADH Monitoring. In: Mitochondrial Function In Vivo Evaluated by NADH Fluorescence. Springer, Cham. https://doi.org/10.1007/978-3-319-16682-7_4

Download citation

Publish with us

Policies and ethics