Skip to main content

Abstract

Disturbances of mitochondrial function lead to disruption of cellular activities, inducing various human diseases such as neurodegenerative processes, aging, cancer, apoptosis, and sepsis. The implications of mitochondrial dysfunction in other body pathologies are widely documented. Most of the information on mitochondrial function was accumulated by running in vitro studies. A relatively small portion of published papers were concerned with monitoring mitochondrial function in vivo and in real time.

The aim of this book is to review the field of mitochondrial monitoring in vivo using NADH autofluorescence. Also, other physiological parameters at the tissue level are measured together with mitochondrial NADH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ernster L, Schatz G (1981) Mitochondria: a historical review. J Cell Biol 91:227s–255s

    Article  CAS  PubMed  Google Scholar 

  2. Kolliker A (1856) Einige Bemerkungen uber die endigungen der Hautnerven un deu bau der Muskelzellen. Z Wiss Zool 8:311–325

    Google Scholar 

  3. Retzius G (1890) Muskelfibriflle und Sarcoplasma. Biol Untersuch Stockholm (NF) 1:51–88

    Google Scholar 

  4. Altmann R (1890) Die Elementarorganismen und ihre Beziehungen zu den Zellen. Veit, Leipzig

    Google Scholar 

  5. Benda C (1898) Ueber die Spermatogenese der Vertebraten und höherer Evertebraten, II. Theil: Die Histiogenese der Spermien. Arch Anat Physiol 73:393–398

    Google Scholar 

  6. Monsalve M, Borniquel S, Valle I, Lamas S (2007) Mitochondrial dysfunction in human pathologies. Front Biosci 12:1131–1153

    Article  CAS  PubMed  Google Scholar 

  7. Tatton WG, Olanow CW (1999) Apoptosis in neurodegenerative diseases: the role of mitochondria. Biochim Biophys Acta 1410:195–213

    Article  CAS  PubMed  Google Scholar 

  8. Trushina E, McMurray CT (2007) Oxidative stress and mitochondrial dysfunction in neurodegenerative diseases. Neuroscience 145:1233–1248. doi:10.1016/j.neuroscience.2006.10.056

    Article  CAS  PubMed  Google Scholar 

  9. Kermer P, Liman J, Weishaupt JH, Bähr M (2004) Neuronal apoptosis in neurodegenerative diseases: from basic research to clinical application. Neurodegener Dis 1:9–19. doi:10.1159/000076665

    Article  PubMed  Google Scholar 

  10. Linford NJ, Schriner SE, Rabinovitch PS (2006) Oxidative damage and aging: spotlight on mitochondria. Cancer Res 66:2497–2499. doi:10.1158/0008-5472.CAN-05-3163

    Article  CAS  PubMed  Google Scholar 

  11. Navarro A, Boveris A (2007) The mitochondrial energy transduction system and the aging process. Am J Physiol Cell Physiol 292:C670–C686. doi:10.1152/ajpcell.00213.2006

    Article  CAS  PubMed  Google Scholar 

  12. Fink MP (2002) Bench-to-bedside review: cytopathic hypoxia. Crit Care 6:491–499

    Article  PubMed Central  PubMed  Google Scholar 

  13. Robertson CL, Soane L, Siegel ZT, Fiskum G (2006) The potential role of mitochondria in pediatric traumatic brain injury. Dev Neurosci 28:432–446. doi:10.1159/000094169

    Article  CAS  PubMed  Google Scholar 

  14. Sullivan PG, Krishnamurthy S, Patel SP, Pandya JD, Rabchevsky AG (2007) Temporal characterization of mitochondrial bioenergetics after spinal cord injury. J Neurotrauma 24:991–999. doi:10.1089/neu.2006.0242

    Article  PubMed  Google Scholar 

  15. Sims NR, Anderson MF (2002) Mitochondrial contributions to tissue damage in stroke. Neurochem Int 40:511–526

    Article  CAS  PubMed  Google Scholar 

  16. Ballinger SW (2005) Mitochondrial dysfunction in cardiovascular disease. Free Radic Biol Med 38:1278–1295. doi:10.1016/j.freeradbiomed.2005.02.014

    Article  CAS  PubMed  Google Scholar 

  17. Porta F, Takala J, Weikert C, Bracht H, Kolarova A, Lauterburg BH, Borotto E, Jakob SM (2006) Effects of prolonged endotoxemia on liver, skeletal muscle and kidney mitochondrial function. Crit Care 10:R118. doi:10.1186/cc5013

    Article  PubMed Central  PubMed  Google Scholar 

  18. Rötig A (2003) Renal disease and mitochondrial genetics. J Nephrol 16:286–292

    PubMed  Google Scholar 

  19. Crouser ED (2004) Mitochondrial dysfunction in septic shock and multiple organ dysfunction syndrome. Mitochondrion 4:729–741. doi:10.1016/j.mito.2004.07.023

    Article  CAS  PubMed  Google Scholar 

  20. Watanabe S, Yaginuma R, Ikejima K, Miyazaki A (2008) Liver diseases and metabolic syndrome. J Gastroenterol 43:509–518. doi:10.1007/s00535-008-2193-6

    Article  CAS  PubMed  Google Scholar 

  21. Abdul-Ghani MA, DeFronzo RA (2008) Mitochondrial dysfunction, insulin resistance, and type 2 diabetes mellitus. Curr Diabet Rep 8:173–178

    Article  CAS  Google Scholar 

  22. Wei Y, Rector RS, Thyfault JP, Ibdah JA (2008) Nonalcoholic fatty liver disease and mitochondrial dysfunction. World J Gastroenterol 14:193–199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Cunha-Oliveira T, Rego AC, Oliveira CR (2008) Cellular and molecular mechanisms involved in the neurotoxicity of opioid and psychostimulant drugs. Brain Res Rev 58:192–208. doi:10.1016/j.brainresrev.2008.03.002

    Article  CAS  PubMed  Google Scholar 

  24. Boess F, Ndikum-Moffor FM, Boelsterli UA, Roberts SM (2000) Effects of cocaine and its oxidative metabolites on mitochondrial respiration and generation of reactive oxygen species. Biochem Pharmacol 60:615–623

    Article  CAS  PubMed  Google Scholar 

  25. Warburg O (1930) Metabolism of tumors. Constable, London

    Google Scholar 

  26. Weinhouse S (1956) On respiratory impairment in cancer cells. Science 124:267–269

    Article  CAS  PubMed  Google Scholar 

  27. Modica-Napolitano JS, Kulawiec M, Singh KK (2007) Mitochondria and human cancer. Curr Mol Med 7:121–131

    Article  CAS  PubMed  Google Scholar 

  28. Brandon M, Baldi P, Wallace DC (2006) Mitochondrial mutations in cancer. Oncogene 25:4647–4662. doi:10.1038/sj.onc.1209607

    Article  CAS  PubMed  Google Scholar 

  29. Chatterjee A, Mambo E, Sidransky D (2006) Mitochondrial DNA mutations in human cancer. Oncogene 25(34):4663–4674. doi:10.1038/sj.onc.1209604

    Article  CAS  PubMed  Google Scholar 

  30. Ying W (2006) NAD+ and NADH in cellular functions and cell death. Front Biosci 11:3129–3148

    Article  CAS  PubMed  Google Scholar 

  31. Ying W (2007) NAD+ and NADH in brain functions, brain diseases and brain aging. Front Biosci 12:1863–1888

    Article  CAS  PubMed  Google Scholar 

  32. Kann O, Kovacs R (2007) Mitochondria and neuronal activity. Am J Physiol Cell Physiol 292(2):C641–C657

    Article  CAS  PubMed  Google Scholar 

  33. Edeas M, Weissig V (2013) Targeting mitochondria: strategies, innovations and challenges. The future of medicine will come through mitochondria. Mitochondrion 13(5):389–390. doi:10.1016/j.mito.2013.03.009

    Article  CAS  PubMed  Google Scholar 

  34. Kaplan NO (1985) The role of pyridine-nucleotides in regulating cellular-metabolism. Curr Top Cell Reg 26:371–381

    CAS  Google Scholar 

  35. Krebs HA (1972) The Pasteur effect and the relations between respiration and fermentation. Essays Biochem 8:1–34

    CAS  PubMed  Google Scholar 

  36. Crabtree HG (1929) Observations on the carbohydrate metabolism of tumours. Biochem J 23(3):536–545

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Crabtree HG (1928) The carbohydrate metabolism of certain pathological overgrowths. Biochem J 22(5):1289–1298

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Bickis IJ, Henderson IW (1966) Biochemical studies of human tumors. I. Estimation of tumor malignancy from metabolic measurements in vitro. Cancer (Phila) 19(1):89–102

    Article  CAS  Google Scholar 

  39. Bickis IJ, Henderson IW, Quastel JH (1966) Biochemical studies of human tumors. II. In vitro estimation of individual tumor sensitivity to anticancer agents. Cancer (Phila) 19(1):103–113

    Article  CAS  Google Scholar 

  40. Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4(11):891–899. doi:10.1038/nrc1478

    Article  CAS  PubMed  Google Scholar 

  41. Biswas S, Ray M, Misra S, Dutta DP, Ray S (1997) Selective inhibition of mitochondrial respiration and glycolysis in human leukaemic leucocytes by methylglyoxal. Biochem J 323:343–348

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Fontenay M, Cathelin S, Amiot M, Gyan E, Solary E (2006) Mitochondria in hematopoiesis and hematological diseases. Oncogene 25(34):4757–4767. doi:10.1038/sj.onc.1209606

    Article  CAS  PubMed  Google Scholar 

  43. Mesters RM, Padro T, Steins M, Bieker R, Retzlaff S, Kessler T, Kienast J, Berdel WE (2001) [Angiogenesis in patients with hematologic malignancies]. Onkologie 24(suppl 5):75–80

    Article  PubMed  Google Scholar 

  44. Moehler TM, Hillengass J, Goldschmidt H, Ho AD (2004) Antiangiogenic therapy in hematologic malignancies. Curr Pharm Des 10(11):1221–1234

    Article  CAS  PubMed  Google Scholar 

  45. Simonnet H, Alazard N, Pfeiffer K, Gallou C, Beroud C, Demont J, Bouvier R, Schagger H, Godinot C (2002) Low mitochondrial respiratory chain content correlates with tumor aggressiveness in renal cell carcinoma. Carcinogenesis (Oxf) 23(5):759–768

    Article  CAS  Google Scholar 

  46. Godinot C, de Laplanche E, Hervouet E, Simonnet H (2007) Actuality of Warburg’s views in our understanding of renal cancer metabolism. J Bioenerg Biomembr 39(3):235–241. doi:10.1007/s10863-007-9088-8

    Article  CAS  PubMed  Google Scholar 

  47. Mayevsky A (2009) Mitochondrial function and energy metabolism in cancer cells: past overview and future perspectives. Mitochondrion 9:165–179. doi:10.1016/j.mito.2009.01.009

    Article  CAS  PubMed  Google Scholar 

  48. Mayevsky A, Barbiro-Michaely E (2009) Use of NADH fluorescence to determine mitochondrial function in vivo. Int J Biochem Cell Biol 41:1977–1988. doi:10.1016/j.biocel.2009.03.012

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mayevsky, A. (2015). Introduction. In: Mitochondrial Function In Vivo Evaluated by NADH Fluorescence. Springer, Cham. https://doi.org/10.1007/978-3-319-16682-7_1

Download citation

Publish with us

Policies and ethics