Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

Seawater is an aggressive environment for materials particularly in warmer and polluted waters. In this environment, steel infrastructure, such as offshore platforms, pipelines, and tanks may corrode quickly, and for engineering and management purposes, the rate at which this occurs is of interest. Here, recently developed understanding of the corrosion processes over extended exposure periods is reviewed and recently developed science-based mathematical models for the prediction of corrosion and pitting of structural steels are described. The effect of various influencing factors is reviewed, including that of seawater quality and the effect of microorganisms on corrosion. Also, short discussions of the corrosion of stainless steels, aluminum, and copper-nickels, all materials that are used under marine exposure conditions, are given. This is followed by a description of recent observations of the corrosion of steel reinforcing bars in reinforced concrete, another widely used construction material in marine environments. It shows that reinforced concrete can be a highly successful construction material, even in long term and under marine conditions, but that severe loss of reinforcement may occur without obvious external signs detectable by visual inspection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

HSLA:

high strength low alloy

MIC:

microbially induced corrosion

References

  • C.R. Southwell, J.D. Bultman, C.W. Hummer: Estimating service life of steel in seawater. In: Seawater Corrosion Handbook, ed. by M. Schumacher (Noyes Data Corp., Park Ridge 1979) pp. 374–387

    Google Scholar 

  • J.M. Wright, A. Colling, G. Bearman: Open University: Seawater: Its Composition, Properties and Behaviour (Butterworths-Heinemann, Oxford 1995)

    Google Scholar 

  • H.U. Svedrup, M.W. Johnson, R.H. Fleming: The Oceans: Their Physics, Chemistry and General Biology (McGraw-Hill, New York 1942)

    Google Scholar 

  • B.J. Little, J.S. Lee: Microbiologically Induced Corrosion (Wiley, New York 2007)

    Book  Google Scholar 

  • OSPAR: Regional Quality Status Report II for the Greater North Sea (OSPAR Comm., London 2000)

    Google Scholar 

  • H.A. Cole: Pollution of the sea and its effects, Proc. R. Soc. B 205(1158), 17–30 (1979)

    Article  Google Scholar 

  • A.M. Szmant, A. Forrester: Water column and sediment nitrogen and phosphorous distribution patterns in the Florida Keys, Coral Reefs 15, 21–41 (1996)

    Article  Google Scholar 

  • M.J. Furnas, J. Brodie: Current status of nutrient levels and other water quality parameters in the great barrier reef. In: Downstream Effects of Land Use, ed. by H.M. Hunter, A.G. Eyles, B. Rayment (Department of Natural Resources, Queensland 1996) pp. 9–21

    Google Scholar 

  • J.M. Odom: Industrial and environmental activities of sulfate-reducing bacteria. In: The Sulfate-Reducing Bacteria: Contemporary Perspectives, ed. by J.M. Odom, R. Singleton Jr. (Springer, New York 1993) pp. 189–210

    Chapter  Google Scholar 

  • G. Radach, J. Genkeler: Gridding of the NOWESP Data Sets, Ber. Zent. Meere. Klimatforsch. B: Ozeanogr., Vol. 27 (Inst. Meeresk., Hamburg 1997)

    Google Scholar 

  • A.F. Carlucci: Nutrient and microbial response to nutrients in seawater. In: Effect of Ocean Environments on Microbial Activities, ed. by R.R. Colwell, R.Y. Morita (Univ. Park Press, Baltimore 1974)

    Google Scholar 

  • K.H. Coale, K.S. Johnson, S.E. Fitzwater, R.M. Gordon, S. Tanner, F.P. Chavez, L. Ferioli, C. Sakamoto, P. Rogers, F. Millero, P. Steinberg, P. Nightingale, D. Cooper, W.P. Cochlan, M.R. Landry, J. Constantinou, G. Rollwagen, A. Trasvina, R. Kudela: A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial pacific ocean, Nature 383, 495–501 (1996)

    Article  Google Scholar 

  • B. Austin: Marine Microbiology (Cambridge Univ. Press, Cambridge 1988), Chap. 5

    Google Scholar 

  • G. Kreysa, R. Eckermann: Dechema Corrosion Handbook, Vol. 11 (VCH, New York 1992)

    Google Scholar 

  • M. Schumacher (Ed.): Seawater Corrosion Handbook (Noyes Data Corp., Park Ridge 1979)

    Google Scholar 

  • O.E. Gjorv: Durability Design of Concrete Structures in Severe Environments (Taylor Francis, London 2009)

    Google Scholar 

  • M.G. Richardson: Fundamentals of Durable Reinforced Concrete (Spon Press, London 2002)

    Book  Google Scholar 

  • J.E. Bringas: Handbook of Comparative World Steel Standards (ASTM, Mayfield 2004)

    Google Scholar 

  • R.E. Melchers: Structural Reliability Analysis and Prediction (Wiley, Chichester 1999)

    Google Scholar 

  • R. Jeffrey, R.E. Melchers: The changing topography of corroding mild steel surfaces in seawater, Corros. Sci. 49, 2270–2288 (2007)

    Article  Google Scholar 

  • J. Heyman: Elements of the Theory of Structures (Cambridge Univ. Press, Cambridge 1996)

    Book  Google Scholar 

  • US Office of Naval Research: Second World Congress on Corrosion in the Military, Naples (Trans-Tech, Pfäffikon 2007)

    Google Scholar 

  • D. Jones: Principles and Prevention of Corrosion, 2nd edn. (Prentice-Hall, Upper Saddle River 1996)

    Google Scholar 

  • H.H. Uhlig, R.W. Revie: Corrosion and Corrosion Control, 3rd edn. (Wiley, New York 1985)

    Google Scholar 

  • B.W. Forgeson, C.R. Southwell, A.L. Alexander: Corrosion of metals in tropical environments. Part 3. Underwater corrosion of ten structural steels, Corrosion 16(3), 87–96 (1960)

    Article  Google Scholar 

  • C.R. Southwell, B.W. Forgeson, A.L. Alexander: Corrosion of metals in tropical environments. Part 2. Atmospheric corrosion of ten structural steels, Corrosion 14(9), 53–59 (1958)

    Article  Google Scholar 

  • R.E. Melchers, R. Jeffrey: The critical involvement of anaerobic bacterial activity in modelling the corrosion behaviour of mild steel in marine environments, Electrochim. Acta 54, 80–85 (2008)

    Article  Google Scholar 

  • R. Jeffrey, R.E. Melchers: Bacteriological influence in the development of iron sulphide species in marine immersion environments, Corros. Sci. 45(4), 693–714 (2003)

    Article  Google Scholar 

  • R.E. Melchers: Mathematical modelling of the diffusion controlled phase in marine immersion corrosion of mild steel, Corros. Sci. 45(5), 923–940 (2003)

    Article  Google Scholar 

  • R.E. Melchers, P.A. Wells: Models for the anaerobic phases of marine immersion corrosion, Corros. Sci. 48(7), 1791–1811 (2006)

    Article  Google Scholar 

  • R.E. Melchers: Modeling of marine immersion corrosion for mild and low alloy steels – Part 1: Phenomenological model, Corrosion 59(4), 319–334 (2003)

    Article  Google Scholar 

  • R.E. Melchers: Pitting corrosion of mild steel in marine immersion environment – 1: Maximum pit depth, Corrosion 60(9), 824–836 (2004)

    Article  Google Scholar 

  • J.E. Breakell, K. Foster, M. Siegwart: Management of Accelerated Low Water Corrosion in Steel Maritime Structures, Rep. C634 (CIRIA, London 2005)

    Google Scholar 

  • I.B. Beech, S.A. Campbell: Accelerated low water corrosion of carbon steel in the presence of a biofilm harbouring sulphate-reducing and sulphur-oxidising bacteria recovered from a marine sediment, Electrochim. Acta 54, 14–21 (2008)

    Article  Google Scholar 

  • J.M.R. Genin, A.A. Olowe, B. Resiak, N.D. Benbouzid-Rollet, S. L’Haridon, M. Confente, D. Prieur: Microbially induced corrosion of steel sheet piles in a harbour and the presence of green rust two compound. In: Progress in the Understanding and Prevention of Corrosion, ed. by J.M. Costa, A.D. Mercer (Inst. Met., London 1993) pp. 1177–1184

    Google Scholar 

  • R.E. Melchers, R.J. Jeffrey: Corrosion of long vertical steels strips in the marine tidal zone and implications for ALWC, Corros. Sci. 65, 26–36 (2012)

    Article  Google Scholar 

  • M.H. Peterson, L.J. Waldron: Investigation of mild steel corrosion rate in San Diego harbor, Corrosion 17(4), 188t–190t (1961)

    Article  Google Scholar 

  • I.B. Beech, J. Sunner: Biocorrosion: Towards understanding interactions between biofilms and metals, Curr. Opin. Biotechnol. 15, 181–186 (2004)

    Article  Google Scholar 

  • G. Cragnolino, O.H. Tuovinen: The role of sulphate-reducing and sulphur-oxidizing bacteria on the localized corrosion of iron-base alloys – A review, Int. Biodeterior. 20(1), 9–26 (1984)

    Google Scholar 

  • G. Butler, P. Stretton, J.G. Beynon: Initiation and growth of pits on high-purity iron and its alloys with chromium and copper in neutral chloride solutions, Br. Corros. J. 7(7), 168–173 (1972)

    Article  Google Scholar 

  • Z. Szklarska-Smialowska: Pitting Corrosion of Metals (NACE, Houston 1986)

    Google Scholar 

  • R.E. Melchers, M. Ahammed, J. Jeffrey, G. Simundic: Statistical characterization of corroded steel surfaces, Mar. Struct. 23, 274–287 (2010)

    Article  Google Scholar 

  • J. Galambos: The Asymptotic Theory of Extreme Order Statistics, 2nd edn. (Krieger, Malabar 1987)

    MATH  Google Scholar 

  • R.E. Melchers: Extreme value statistics and long-term marine pitting corrosion of steel, Probab. Eng. Mech. 23, 482–488 (2008)

    Article  Google Scholar 

  • S.C. Dexter, G.Y. Gao: Effect of seawater biofilms on corrosion potential and oxygen reduction of stainless steel, Corrosion 44(10), 717–723 (1988)

    Article  Google Scholar 

  • R.E. Melchers, R. Jeffrey: Modeling of long-term corrosion loss and pitting for chromium-bearing and stainless steels in seawater, Corrosion 64(2), 143–154 (2008)

    Article  Google Scholar 

  • C. Vargel: Corrosion of Aluminium (Elsevier, London 2004)

    Google Scholar 

  • Z. Szklarska-Smialowska: Pitting corrosion of aluminum, Corros. Sci. 41, 1743–1767 (1999)

    Article  Google Scholar 

  • J.E. Amonette, C.K. Russell, K.A. Carosino, N.L. Robinson, J.T. Ho: Toxidity of Al to Desulfovibrio desulfuricans, Appl. Environ. Microbiol. 69(7), 4057–4066 (2003)

    Article  Google Scholar 

  • R. E. Melchers: Temperature effect on seawater immersion corrosion of copper-nickel alloy, Corrosion 57(4), 440–451 (2001)

    Article  Google Scholar 

  • J. Tinnea, L. Li, W.H. Hartt, A.A. Sagüés, F. Pianca, B. Chandler, G. Pedersen: Corrosion in bridges and highways. In: ASM Handbook. Volume 13C, Corrosion: Environments and Industries, ed. by S.D. Cramer, B.S. Covino Jr. (ASM Int., Materials Park 2006) pp. 559–597

    Google Scholar 

  • R.E. Melchers, C.Q. Li: Reinforcement corrosion in concrete exposed to the North Sea for over 60 years, Corrosion 65(8), 554–566 (2009)

    Article  Google Scholar 

  • R.E. Melchers, C.Q. Li: Reinforcement corrosion initiation and activation times in concrete structures exposed to severe marine environments, Cem. Concr. Res. 39, 1068–1076 (2009)

    Article  Google Scholar 

  • R.E. Melchers: Carbonates, carbonation and the durability of reinforced concrete marine structures, Aust. J. Struct. Eng. 10(3), 215–226 (2010)

    Google Scholar 

  • R.E. Melchers, T.M. Papé: Aspects of long-term durability of reinforced concrete structures in marine environments, Eur. J. Environ. Civ. Eng. 15(7), 969–980 (2011)

    Article  Google Scholar 

  • R.E. Melchers, T.M. Pape: The durability of reinforced concrete structures in marine environments, Proc. Aust. Struct. Eng. Conf., Sydney (2012)

    Google Scholar 

  • D.A. Hausmann: Steel corrosion in concrete, how does it occur, Mater. Perform. 6(11), 19–23 (1967)

    Google Scholar 

  • A.A. Sagues, E.I. Moreno, C. Andrade: Evolution of pH during in-situ leaching in small concrete cavities, Cem. Concr. Res. 27(11), 1747–1759 (1997)

    Article  Google Scholar 

  • G.J. Verbeek: Mechanisms of Corrosion of Steel in Concrete, Corrosion of Metals in Concrete, SP-49 (Am. Concr. Inst., Farmington Hills 1975) pp. 21–38

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert E. Melchers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Melchers, R.E. (2016). Principles of Marine Corrosion. In: Dhanak, M.R., Xiros, N.I. (eds) Springer Handbook of Ocean Engineering. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-16649-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16649-0_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16648-3

  • Online ISBN: 978-3-319-16649-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics