Skip to main content

Marine Hydrokinetic Energy Resource Assessment

  • Chapter
Springer Handbook of Ocean Engineering

Part of the book series: Springer Handbooks ((SHB))

  • 11k Accesses

Abstract

Marine hydrokinetic energy includes that due to waves, tides, and ocean currents. The characteristics of these forms of energy and the assessment of their potential for extraction are discussed briefly herein. Detailed consideration is given to the assessment of ocean current energy, including a case study of the resource assessment of the Florida Current. Estimates of global and local open ocean current resources are obtained based on data from an ocean model. The power densities of major western boundary currents are estimated and the potential for development of ocean currents globally is assessed. Principal factors that govern economic viability of harnessing an ocean current at a location include the in-situ power density, the distance of the location from the shore, and the local depth of the seafloor. A metrics based on these considerations is discussed. Once potential sites are identified, considerations would need to be given to regulatory and permitting requirements, including assessment of potential impact on the environment and its ecosystems, marine spatial planning and the impact on the energy resource itself; development of optimal design of devices for high performance; and mitigation of deployment and maintenance costs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

HYCOM:

hybrid coordinate ocean model

OM:

operations and maintenance

References

  • O.M. Phillips: On the generation of waves by turbulent wind, J. Fluid Mech. 2(5), 417–445 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  • J.W. Miles: On the generation of surface waves by shear flows, J. Fluid Mech. 3(2), 185–204 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  • K. Hasselmann, T.P. Barnett, E. Bouws, H. Carlson, D.E. Cartwright, K. Enke, J.A. Ewing, H. Gienapp, D.E. Hasselmann, P. Kruseman, A. Meerburg, P. Müller, D.J. Olbers, K. Richter, W. Sell, H. Walden: Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP), Dtsch. Hydrogr. Z 1(8), 1–95 (1973)

    Google Scholar 

  • A. Cornett: A global wave energy resource assessment, Proc. 18th ISOPE Conf. (2008)

    Google Scholar 

  • K. Gunn, C. Stock-Williams: Quantifying the global wave power resource, Renew. Energy 44, 296–304 (2012)

    Article  Google Scholar 

  • H.L. Tolman: User manual and system documentation of WAVEWATCH-III, Version 2.22, NOAA/NWS/NCEP/MMAB Technical Note (2002)

    Google Scholar 

  • R. Boud, T.W. Thorpe: Wavenet: Results from the work of the European thematic network on wave energy, ERK5-CT-1999-20001, European Community (2003) pp. 307–308

    Google Scholar 

  • G. Mørk, S. Barstow, A. Kabuth, T. Pontes: Assessing the global wave energy potential, Proc. 29th Int. Conf. Ocean Offshore Mech. Arct. Eng. (ASME) (2010)

    Google Scholar 

  • G. Hagerman, G. Scott: Mapping and Assessment of the United States Ocean Wave Energy Resource , Tech. Rep. 1024637 (Electric Power Research Institute, Palo Alto 2011)

    Book  Google Scholar 

  • AVISO: Sun and Moon shape tides on Earth, Published online October, 2000. http://www.aviso.oceanobs.com/en/news/idm/2000/oct-2000-sun-and-moon-shape-tides-on-earth/index.html

  • R.H. Charlier, J.R. Justus: Ocean Energies: Environmental, Economic and Technological Aspects of Alternative Power Sources, Elsevier Oceanography Series (Elsevier, Amsterdam 1993)

    Google Scholar 

  • A. Lewis, S. Estefen, J. Huckerby, W. Musial, T. Pontes, J. Torres-Martinez: Ocean energy. In: IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation, ed. by O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (Cambridge Univ. Press, Cambridge 2011)

    Google Scholar 

  • M. Pidwirny: Surface and subsurface ocean currents: Ocean current map. In: Fundamentals of Physical Geography, 2nd edn. (eBook) http://www.physicalgeography.net/fundamentals/8q_1.html (2006)

  • A.E. Gill: Atmosphere-Ocean Dynamics, International Geophysics Series, Vol. 30 (Oxford Academic Press, Oxford 1982)

    Google Scholar 

  • W.H. Munk: On the wind-driven ocean circulation, J. Meteorol. 7(2), 79–93 (1950)

    Article  Google Scholar 

  • R.H. Stewart: Introduction to Physical Oceanography, http://oceanworld.tamu.edu/resources/ocng_textbook/PDF_files/book_pdf_files.html

  • A. Betz: Das Maximum der theoretisch möglichen Ausnützung des Windes durch Windmotoren, Z. Gesamte Turbinenwesen 26, 307–309 (1920)

    Google Scholar 

  • G.A.M. Van Kuik: The Lanchester–Betz–Joukowsky limit, Wind Energy 10, 289–291 (2007)

    Article  Google Scholar 

  • V.L. Okulov, J.N. Sørensen: Refined Betz limit for rotors with a finite number of blades, Wind Energy 11, 415–426 (2008)

    Article  Google Scholar 

  • C. Garrett, P. Cummins: The efficiency of a turbine in a tidal channel, J. Fluid Mech. 588, 243–251 (2007)

    Article  MATH  Google Scholar 

  • T. Nishino, R.H.J. Willden: The efficiency of an array of tidal turbines partially blocking a wide channel, J. Fluid Mech. 708, 596–606 (2012)

    Article  MATH  Google Scholar 

  • C. Garrett, P. Cummins: The power potential of tidal currents in channels, Proc. R. Soc. A. 461, 2563–2572 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • G. Sutherland, M. Foreman, C. Garrett: Tidal current energy assessment for Johnstone Strait, Vancouver Island, Proc. Inst. Mech. Eng, J. Power Energy A. 221(2), 147–157 (2007)

    Article  Google Scholar 

  • K.A. Haas, H.M. Fritz, S.P. French, B.T. Smith, V. Neary: Assessment of Energy Production Potential from Tidal Streams in the United States: Final Report (Georgia Tech Research Corporation, Savannah 2011)

    Google Scholar 

  • T.A.A. Adcock, S. Draper, G.T. Houlsby, A.G.L. Borthwick, S. Serhadlıoğlu: The available power from tidal stream turbines in the Pentland Firth, Proc. R. Soc. A 469(2157), 20130072 (2013)

    Article  Google Scholar 

  • A.E.S. Duerr: A Hydrokinetic Resource Assessment Of the Florida Current, Ph.D. Thesis (Florida Atlantic University, Boca Raton 2012)

    Google Scholar 

  • A.E.S. Duerr, M.R. Dhanak: An assessment of the hydrokinetic energy resource of the Florida Current, IEEE J. Ocean. Eng. 37, 281–293 (2012)

    Article  Google Scholar 

  • A.E. Duerr, M.R. Dhanak, J.H. Van Zwieten: Utilizing the hybrid coordinate ocean model for the assessment of Florida Current’s hydrokinetic renewable energy resource, Mar. Technol. Soc. J. 46(5), 24–33 (2012)

    Article  Google Scholar 

  • J.H. Van Zwieten Jr., A.E.S. Duerr, G.M. Alsenas, H.P. Hanson: Global ocean current energy assessment: An initial look, Proc. 1st Mar. Energy Technol. Symp. (METS) (2013)

    Google Scholar 

  • E.P. Chassignet, H.E. Hurlburt, E.J. Metzger, O.M. Smedstad, J. Cummings, G.R. Halliwell, R. Bleck, R. Baraille, A.J. Wallcraft, C. Lozano, H.L. Tolman, A. Srinivasan, S. Hankin, P. Cornillon, R. Weisberg, A. Barth, R. He, F. Werner, J. Wilkin: US GODAE: Global ocean prediction with the hybrid coordinate ocean model (HYCOM), Oceanography 22(2), 64–75 (2009)

    Article  Google Scholar 

  • N. Maximenko, P. Niiler, M.-H. Rio, O. Melnichenko, L. Centurioni, D. Chambers, V. Zlotnicki, B. Galperin: Mean dynamic topography of the ocean derived from satellite and drifting buoy data using three different techniques, J. Atmos. Oceanic Technol. 26(9), 1910–1919 (2009)

    Article  Google Scholar 

  • P. Knudsen, R. Bingham, O. Andersen, M.-H. Rio: A global mean dynamic topography and ocean circulation estimation using a preliminary GOCE gravity model, J. Geod. 85, 861–879 (2011)

    Article  Google Scholar 

  • J.H. VanZwieten Jr., I. Meyer, G.M. Alsenas: Evaluation of HYCOM as a tool for ocean current energy assessment, Proc. 2nd Mar. Energy Technol. Symp. (METS) (2014)

    Google Scholar 

  • J.H. VanZwieten Jr., W.E. Baxley, G.M. Alsenas, I. Meyer, M. Muglia, C. Lowcher, J. Bane, M. Gabr, R. He, T. Hudon, R. Stevens, A.E.S. Duerr: Ocean current turbine mooring considerations, Proc. Offshore Technol. Conf. (2015), OTC-25965-MS

    Google Scholar 

  • G. Jeans, L. Harrington-Missin, C. Herry, M. Prevosto, C. Maisondieu, J.A.M. Lima: Deepwater current profile data sources for riser engineering offshore Brazil, Proc. 31st Conf. Ocean Offshore Arct. Eng. (ASME) (2012), OMAE2012-83400

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manhar R. Dhanak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dhanak, M.R., Duerr, A.E., VanZwieten, J.H. (2016). Marine Hydrokinetic Energy Resource Assessment. In: Dhanak, M.R., Xiros, N.I. (eds) Springer Handbook of Ocean Engineering. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-16649-0_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16649-0_44

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16648-3

  • Online ISBN: 978-3-319-16649-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics