Skip to main content

Offshore Geotechnics

  • Chapter
  • 11k Accesses

Part of the book series: Springer Handbooks ((SHB))

Abstract

Offshore geotechnics is a multidisciplines area that cover conventional civil engineering disciplines such as fluid mechanics, coastal engineering, geotechnical engineering, structures engineering, etc. This area has attracted great attention among coastal and geotechnical engineers due to growing activities in marine environment worldwide. An appropriate design of foundations of marine infrastructures, such as breakwater, offshore pipeline, platforms, and offshore wind turbine systems plays an important role in the success of offshore engineering projects. The evaluation of the soil response due to hydrodynamic loading, such as waves and currents around foundation of marine structures and its resultant seabed instability is one of the key factors in the design of foundation.

This chapter is an attempt to give a comprehensive review of wave–seabed interaction around the marine structure. It also takes into consideration all state-of-the art knowledge. We start off with the basic models including a detailed review and summary of existing work. Then, we outline recent advances in the field and their engineering applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

1-D:

one-dimensional

2-D:

two-dimensional

3-D:

three-dimensional

COBRAS:

Cornell breaking wave and structure

FEM:

finite element method

RANS:

Reynolds-averaged Navier–Stokes equation

VARANS:

volume-averaged Reynolds-averaged Navier–Stokes equations

VS:

Varley-Seymour

WSSI:

wave–seabed–structure interactions

References

  • J.A. Putnam: Loss of wave energy due to percolation in a permeable sea bottom, Trans. Am. Geophys. Union 30(3), 349–356 (1949)

    Article  Google Scholar 

  • H. Nakamura, R. Onishi, H. Minamide: On the seepage in the seabed due to waves, Proc. 20th Coast. Eng. Conf. JSCE (1973) pp. 421–428

    Google Scholar 

  • M.A. Biot: General theory of three-dimensional consolidation, J. Appl. Phys. 26(2), 155–164 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  • O.C. Zienkiewicz, C.T. Chang, P. Bettess: Drained, undrained, consolidating and dynamic behaviour assumptions in soils, Géotechnique 30(4), 385–395 (1980)

    Article  Google Scholar 

  • D.-S. Jeng, M.S. Rahman, T.L. Lee: Effects of inertia forces on wave-induced seabed response, Int. J. Offshore Polar Eng. 9(4), 307–313 (1999)

    Google Scholar 

  • D.-S. Jeng, M.S. Rahman: Effective stresses in a porous seabed of finite thickness: Inertia effects, Can. Geotech. J. 37(4), 1388–1397 (2000)

    Google Scholar 

  • M.A. Biot: Theory of propagation of elastic waves in a fluidsaturated porous solid, Part I: Low frequency range, J. Acoust. Soc. Am. 28, 168–177 (1956)

    Article  MathSciNet  Google Scholar 

  • D.-S. Jeng, D.H. Cha: Effects of dynamic soil behavior and wave non-linearity on the wave-induced pore pressure and effective stresses in porous seabed, Ocean Eng. 30(16), 2065–2089 (2003)

    Article  Google Scholar 

  • M.B.C. Ulker, M.S. Rahman, D.-S. Jeng: Wave-induced response of seabed: Various formulations and their applicability, Appl. Ocean Res. 31(1), 12–24 (2009)

    Article  Google Scholar 

  • S. Sassa, H. Sekiguchi: Analysis of wave-induced liquefaction of sand beds, Géotechnique 51(2), 115–126 (2001)

    Article  Google Scholar 

  • D.-S. Jeng, J. Ou: 3D models for wave-induced pore pressure near breakwater heads, Acta Mech. 215, 85–104 (2010)

    Article  MATH  Google Scholar 

  • R.O. Reid, K. Kajiura: On the damping of gravity waves over a permeable sea bed, Trans. Am. Geophys. Union 38, 662–666 (1957)

    Article  MathSciNet  Google Scholar 

  • J.F.A. Sleath: Wave-induced pressures in beds of sand, J. Hydraul. Div. ASCE 96(2), 367–378 (1970)

    Google Scholar 

  • P.L.F. Liu: Damping of water waves over porous bed, J. Hydraul. Div. ASCE 99(12), 2263–2271 (1973)

    Google Scholar 

  • P.L.F. Liu: On gravity waves propagated over a layered permeable bed, Coast. Eng. 1, 135–148 (1977)

    Article  Google Scholar 

  • G. Dagan: The generalization of Darcy law for nonuniform flows, Water Resour. Res. 15(1), 1–7 (1979)

    Article  Google Scholar 

  • P.L.F. Liu, R.A. Dalrymple: The damping of gravity water-waves due to percolation, Coast. Eng. 8(1), 33–49 (1984)

    Article  Google Scholar 

  • S.R. Massel: Gravity waves propagated over permeable bottom, J. Waterw. Harb. Coast. Eng. ASCE 102(2), 111–121 (1976)

    Google Scholar 

  • W.W. Mallard, R.A. Dalrymple: Water waves propagating over a deformable bottom, Proc. 9th Annu. Offshore Technol. Conf. (1977) pp. 141–145

    Google Scholar 

  • T.H. Dawson: Wave propagation over a deformable sea floor, Ocean Eng. 5, 227–234 (1978)

    Article  Google Scholar 

  • H. Moshagen, A. Torum: Wave induced pressures in permeable seabeds, J. Waterw. Harb. Coast. Eng. Div. ASCE 101(1), 49–57 (1975)

    Google Scholar 

  • T. Yamamoto, H.L. Koning, H. Sellmeijer, E.V. Hijum: On the response of a poro-elastic bed to water waves, J. Fluid Mech. 87(1), 193–206 (1978)

    Article  Google Scholar 

  • J.H. Prevost, O. Eide, K.H. Anderson: Discussion on ‘Wave induced pressures in permeable seabeds’ by Moshagen and Torum, J. Waterw. Harb. Coast. Eng. Div. ASCE 101(1975), 464–465 (1975)

    Google Scholar 

  • Z. Gu, H. Wang: Gravity waves over porous bottoms, Coast. Eng. 15(5/6), 497–524 (1991)

    Article  Google Scholar 

  • T. Yamamoto: Wave induced instability seabed, Proc. ASCE Special Conf. Coast. Sediments (1977) pp. 898–913

    Google Scholar 

  • O.S. Madsen: Wave-induced pore pressures and effective stresses in a porous bed, Géotechnique 28(4), 377–393 (1978)

    Article  MathSciNet  Google Scholar 

  • T. Yamamoto: Wave-induced pore pressures and effective stresses in inhomogeneous seabed foundations, Ocean Eng. 8, 1–16 (1981)

    Article  Google Scholar 

  • S. Okusa: Wave-induced stress in unsaturated submarine sediments, Géotechnique 35(4), 517–532 (1985)

    Article  Google Scholar 

  • B. Gatmiri: A simplified finite element analysis of wave-induced effective stress and pore pressures in permeable sea beds, Géotechnique 40(1), 15–30 (1990)

    Article  Google Scholar 

  • D.-S. Jeng, J.R.C. Hsu: Wave-induced soil response in a nearly saturated seabed of finite thickness, Géotechnique 46(3), 427–440 (1996)

    Article  Google Scholar 

  • M.S. Rahman, K. El-Zahaby, J. Booker: A semi-analytical method for the wave-induced seabed response, Int. J. Numer. Anal. Methods Geomech. 18, 213–236 (1994)

    Article  MATH  Google Scholar 

  • E. Varley, B.R. Seymour: A method for obtaining exact solutions to partial differential equations with variable coefficients, Stud. Appl. Math. 78, 183–225 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • B.R. Seymour, D.-S. Jeng, J.R.C. Hsu: Transient soil response in a porous seabed with variable permeability, Ocean Engineering 23(1), 27–46 (1996)

    Article  Google Scholar 

  • Y.S. Lin, D.-S. Jeng: The effect of variable permeability on the wave-induced seabed response, Ocean Eng. 24(7), 623–643 (1997)

    Article  Google Scholar 

  • D.-S. Jeng, B.R. Seymour: Response in seabed of finite depth with variable permeability, J. Geotech. Geoenviron. Eng. ASCE 123(10), 902–911 (1997)

    Article  Google Scholar 

  • D.-S. Jeng, B.R. Seymour: Wave-induced pore pressure and effective stresses in a porous seabed with variable permeability, J. Offshore Mech. Arct. Eng. ASME 119(4), 226–233 (1997)

    Article  Google Scholar 

  • T. Kitano, H. Mase: Wave-induced porewater pressure in a seabed with inhomogeneous permeability, Ocean Eng. 28, 279–296 (2001)

    Article  Google Scholar 

  • D.-S. Jeng: Wave-induced liquefaction potential in a cross-anisotropic seabed, J. Chin. Inst. Eng. 19(1), 59–70 (1996)

    Article  Google Scholar 

  • D.-S. Jeng: Soil response in cross-anisotropic seabed due to standing waves, J. Geotech. Geoenviron. Eng. ASCE 123(1), 9–19 (1997)

    Article  Google Scholar 

  • M. Yuhi, H. Ishida: Theoretical analysis of the response of a cross-anisotropic seabed to ocean surface waves, Proc. Jpn. Soc. Civil Eng. (JSCE) (1997) pp. 49–61

    Google Scholar 

  • M. Yuhi, H. Ishida: Simplified solutions for wave-induced response of anisotropic seabed, J. Waterw. Harb. Coast. Eng. ASCE 128(1), 46–50 (2002)

    Article  Google Scholar 

  • D.-S. Jeng: Discussion to ‘Simplified solutions of wave-induced seabed response in anisotropic seabed’ by Yuhi and Ishida, J. Waterw. Harb. Coast. Eng. ASCE 129(3), 151–153 (2003)

    Article  MathSciNet  Google Scholar 

  • C.C. Mei, M.A. Foda: Wave-induced response in a fluid-filled poro-elastic solid with a free surface – A boundary layer theory, Geophys. J. R. Astron. Soc. 66, 597–631 (1981)

    Article  MATH  Google Scholar 

  • L.H. Huang, C.H. Song: Dynamic response of poro-plastic bed to water waves, J. Hydraul. Eng. ASCE 119(9), 1003–1020 (1993)

    Article  Google Scholar 

  • J.R.C. Hsu, D.-S. Jeng: Wave-induced soil response in an unsaturated anisotropic seabed of finite thickness, Int. J. Numer. Anal. Methods Geomech. 18(11), 785–807 (1994)

    Article  MATH  Google Scholar 

  • L.H. Huang, A.T. Chwang: Trapping and absorption of sound waves. II: A Sphere covered with a porous layer, Wave Motion 12, 401–414 (1990)

    Article  MATH  Google Scholar 

  • T. Kitano, H. Mase: Boundary-layer theory for anisotropic seabed response to sea waves, J. Waterw. Harb. Coast. Eng. ASCE 125(4), 187–194 (1999)

    Article  Google Scholar 

  • B.M. Sumer, N.S. Cheng: A random-walk model for pore pressure accumulation in marine soils, Proc. 9th Int. Offshore Polar Eng. Conf. (1999) pp. 521–528

    Google Scholar 

  • W. Madga: Wave-induced uplift force acting on a submarine buried pipeline: Finite element formulation and verification of computations, Comput. Geotech. 19(1), 47–73 (1996)

    Article  Google Scholar 

  • W. Madga: Wave-induced uplift force on a submarine pipeline buried in a compressible seabed, Ocean Eng. 24(6), 551–576 (1997)

    Article  Google Scholar 

  • W. Madga: Wave-induced cyclic pore-pressure perturbation effects in hydrodynamic uplift force acting on submarine pipeline buried in seabed sediments, Coast. Eng. 39, 243–272 (2000)

    Article  Google Scholar 

  • K. Zen, H. Yamazaki: Mechanism of wave-induced liquefaction and densification in seabed, Soils Found. 30(4), 90–104 (1990)

    Article  Google Scholar 

  • K. Zen, H. Yamazaki: Oscillatory pore pressure and liquefaction in seabed induced by ocean waves, Soils Found. 30(4), 147–161 (1990)

    Article  Google Scholar 

  • B. Gatmiri: Response of cross-anisotropic seabed to ocean waves, J. Geotech. Eng. ASCE 118(9), 1295–1314 (1992)

    Article  Google Scholar 

  • O.C. Zienkiewicz, F.C. Scott: On the principle of repeatability and its application in analysis of turbine and pump impellers, Int. J. Numer. Methods Eng. 9, 445–452 (1972)

    Article  Google Scholar 

  • Y.S. Lin, D.-S. Jeng: Effects of variable shear modulus on wave-induced seabed response, J. Chin. Inst. Eng. 24(1), 109–115 (2000)

    Article  Google Scholar 

  • S.D. Thomas: A finite element model for the analysis of wave induced stresses, displacements and pore pressure in an unsaturated seabed. I: Theory, Comput. Geotech. 8(1), 1–38 (1989)

    Article  Google Scholar 

  • S.D. Thomas: A finite element model for the analysis of wave induced stresses, displacements and pore pressure in an unsaturated seabed. II: Model verification, Comput. Geotech. 17(1), 107–132 (1995)

    Article  Google Scholar 

  • D.-S. Jeng, Y.S. Lin: Finite element modelling for water waves – Soil interaction, Soil Dyn. Earthq. Eng. 15(5), 283–300 (1996)

    Article  Google Scholar 

  • Y.S. Lin, D.-S. Jeng: Response of poro-elastic seabed to a 3-D wave system: A finite element analysis, Coast. Eng. Jpn. 39(2), 165–183 (1996)

    Google Scholar 

  • D.-S. Jeng, Y.S. Lin: Non-linear wave-induced response of porous seabed: A finite element analysis, Int. J. Numer. Anal. Methods Geomech. 21(1), 15–42 (1997)

    Article  MATH  Google Scholar 

  • D.-S. Jeng, Y.S. Lin: Poroelastic analysis for wave-seabed interaction problem, Comput. Geotech. 26(1), 43–64 (2000)

    Article  Google Scholar 

  • M.A. Biot: Theory of propagation of elastic waves in a fluidsaturated porous solid, Part II: High frequency range, J. Acoust. Soc. Am. 28, 179–191 (1956)

    Article  MathSciNet  Google Scholar 

  • T. Sakai, H. Mase, A. Matsumoto: Effects of inertia and gravity on seabed response to ocean waves. In: Modelling Soil-Water-Structure Interactions, ed. by P.A. Kolkman, J. Linderberg, K. Pilarczyk (A. A. Balkema, Rotterdam 1988)

    Google Scholar 

  • T. Sakai, K. Hatanaka, H. Mase: Wave-induced effective stress in seabed and its momentary liquefaction, J. Waterw. Port Coast. Ocean Eng, ASCE 118(2), 202–206 (1992)

    Google Scholar 

  • K. Horikawa: Nearshore Dynamics and Coastal Processes (Univ. of Tokyo Press, Tokyo 1988)

    Google Scholar 

  • A.H.C. Chan: A Unified Finite Element Solution to Static and Dynamic Problems of Geomechanics, Ph.D. Thesis (Univ. of Wales, Swansea 1988)

    Google Scholar 

  • S.L. Dunn, P.L. Vun, A.H.C. Chan, J.S. Damgaard: Numerical modelling of wave-induced liquefaction around pipelines, J. Waterw. Port Coast. Ocean Eng. 132, 276–288 (2006)

    Article  Google Scholar 

  • M.A. Biot: Mechanics of deformation and acoustic propagation in porous media, J. Appl. Phys. 33(4), 1482–1498 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  • D.H. Cha, D.-S. Jeng, M.S. Rahman, H. Sekiguchi, K. Zen, H. Yamazaki: Effects of dynamic soil behaviour on the wave-induced seabed response, Int. J. Ocean Eng. Technol. 16(5), 21–33 (2002)

    Google Scholar 

  • T.W. Chen, L.H. Huang, C.H. Song: Dynamic response of poroelastic bed to nonlinear water waves, J. Eng. Mech. ASCE 123(10), 1041–1049 (1997)

    Article  Google Scholar 

  • P.C. Hsieh, L.H. Huang, T.W. Wang: Dynamic response of soft poroelastic bed to linear water waves – A boundary layer approximation, Int. J. Numer. Anal. Methods Geomech. 25, 651–674 (2001)

    Article  MATH  Google Scholar 

  • M. Yuhi, H. Ishida: Analytical solution for wave-induced seabed response in a soil-water two-phase mixture, Coast. Eng. J. 40(4), 367–381 (1998)

    Article  Google Scholar 

  • D.-S. Jeng, T.L. Lee: Dynamic response of porous seabed to ocean waves, Comput. Geotech. 28(2), 99–128 (2001)

    Article  Google Scholar 

  • D.-S. Jeng: Porous Models for Wave-Seabed Interactions (Springer, Heidelberg 2013)

    Book  Google Scholar 

  • M. Ulker, M.S. Rahman: Response of saturated and nearly saturated porous media: Different formulations and their applicability, Int. J. Numer. Anal. Methods Geomech. 33(5), 633–664 (2009)

    Article  MATH  Google Scholar 

  • H. Sekiguchi, K. Kita, O. Okamoto: Response of poro-elastoplastic beds to standing waves, Soils Found. 35(3), 31–42 (1995)

    Article  Google Scholar 

  • D.-S. Jeng: Discussion of ‘Response of poro-elastic beds to standing waves’ by Sekiguchi et al, Soil. Found. 37(2), 139 (1997)

    MathSciNet  Google Scholar 

  • Q.S. Yang, H.B. Poorooshasb: Seabed response to wave loading, Proc. 7th Int. Offshore Polar Eng. Conf. (1997) pp. 689–695

    Google Scholar 

  • X. Li, J. Zhang, H. Zhang: Instability of wave propagation in saturated poroelastoplastic media, Int. J. Numer. Anal. Methods Geomech. 26, 563–578 (2002)

    Article  MATH  Google Scholar 

  • H.B. Seed, M.S. Rahman: Wave-induced pore pressure in relation to ocean floor stability of cohesionless soils, Mar. Geotechnol. 3(2), 123–150 (1978)

    Article  Google Scholar 

  • B.M. Sumer, J. Fredsøe: The Mechanics of Scour in the Marine Environment (World Scientific, Singapore 2002)

    Book  Google Scholar 

  • J.R.C. Hsu, D.-S. Jeng, C.P. Tsai: Short-crested wave-induced soil response in a porous seabed of infinite thickness, Int. J. Numer. Anal. Methods Geomech. 17(8), 553–576 (1993)

    Article  MATH  Google Scholar 

  • W.G. McDougal, Y.T. Tsai, P.L.F. Liu, E.C. Clukey: Wave-induced pore water pressure accumulation in marine soils, J. Offshore Mech. Arct. Eng. ASME 111(1), 1–11 (1989)

    Article  Google Scholar 

  • P. de Alba, H.B. Seed, C.K. Chan: Sand liquefaction in large-scale simple shear tests, J. Geotech. Div. ASCE 102, 909–928 (1976)

    Google Scholar 

  • B.M. Sumer, V.S.O. Kirca, J. Frøsde: Experimental validation of a mathematical model for seabed liquefaction under waves, Int. J. Offshore Polar Eng. 22, 133–141 (2012)

    Google Scholar 

  • L. Cheng, B.M. Sumer, J. Fredsøe: Solution of pore pressure build up due to progressive waves, Int. J. Numer. Anal. Methods Geomech. 25, 885–907 (2001)

    Article  MATH  Google Scholar 

  • D.-S. Jeng, B.R. Seymour: A simplified analytical approximation for pore-water pressure build-up in a porous seabed, J. Waterw. Port Coast. Ocean Eng, ASCE 133(4), 309–312 (2007)

    Google Scholar 

  • A.M. Geremew: Pore-water pressure development caused by wave-induced cyclic loading in deep porous formation, Int. J. Geomech. ASCE 13(1), 65–68 (2013)

    Article  Google Scholar 

  • Z. Guo, D.-S. Jeng: Discussion of ‘Pore-water pressure development caused by wave-induced cyclic loading in deep porous formation’ by Geremew, Int. J. Geomech. 14(2), 326–328 (2014)

    Article  Google Scholar 

  • B. Liu, D.-S. Jeng: Laboratory study for pore pressure in sandy bed under wave loading, Proc. 23rd Int. Offshore Polar Eng. Conf. (2013)

    Google Scholar 

  • D.-S. Jeng, B.R. Seymour, J. Li: A new approximation for pore pressure accumulation in marine sediment due to water wave, Int. J. Numer. Anal. Methods Geomech. 31(1), 53–69 (2007)

    Article  MATH  Google Scholar 

  • S. Sassa, H. Sekiguchi, J. Miyamamot: Analysis of progressive liquefaction as moving-boundary problem, Géotechnique 51(10), 847–857 (2001)

    Article  Google Scholar 

  • Z. Liu, D.-S. Jeng, A.H. Chan, M.T. Luan: Wave-induced progressive liquefaction in a poro-elastoplastic seabed: A two-layered model, Int. J. Numer. Anal. Methods Geomech. 33(5), 591–610 (2009)

    Article  MATH  Google Scholar 

  • G.P. Thomas: Wave-current interactions: an experimental and numerical study. Part I. Linear waves, Appl. Math. Model. 110, 457–474 (1981)

    Google Scholar 

  • R.E. Baddour, S.W. Song: On the interaction between waves and currents, Ocean Eng. 17(1/2), 1–21 (1990)

    Article  Google Scholar 

  • R.E. Baddour, S.W. Song: Interaction of higher-order water waves with uniform currents, Ocean Eng. 17(6), 551–568 (1990)

    Article  Google Scholar 

  • H.C. Hsu, Y.Y. Chen, J.R.C. Hsu, W.J. Tseng: Nonlinear water waves on uniform current in Lagrangian coordinates, J. Nonlinear Math. Phys. 16(1), 47–61 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Y.J. Jian, Q.Y. Zhu, J. Zhang, Y.F. Wang: Third order approximation to capillary gravity short crested waves with uniform currents, Appl. Math. Model. 33(4), 2035–2053 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Y. Zhang, D.-S. Jeng, F.P. Gao, J.S. Zhang: An analytical solution for response of a porous seabed to combined wave and current loading, Ocean Eng. 57, 240–247 (2013)

    Article  Google Scholar 

  • B. Liu, D.-S. Jeng, J.-S. Zhang: Dynamic response of a porous seabed of finite depth due to combined wave and current loadings, J. Coast. Res. 30(4), 765–776 (2014)

    Article  Google Scholar 

  • C.C. Liao, D.-S. Jeng: Wave (current)-induced soil response in marine sediments, Theor. Appl. Mech. Lett. 3(1), 012002 (2013)

    Article  Google Scholar 

  • J.-S. Zhang, Y. Zhang, C. Zhang, D.-S. Jeng: Numerical modeling of seabed response to the combined wave-current loading, Int. J. Offshore Mech. Arct. Eng. ASME 135(3), 031102 (2013)

    Article  Google Scholar 

  • J. Ye, D.-S. Jeng: Response of seabed to natural loading-waves and currents, J. Eng. Mech. ASCE 138(6), 601–613 (2012)

    Article  Google Scholar 

  • H. Mase, T. Sakai, M. Sakamoto: Wave-induced porewater pressure and effective stresses around breakwater, Ocean Eng. 21(4), 361–379 (1994)

    Article  Google Scholar 

  • N. Mizutani, A.M. Mostafa: Nonlinear wave-induced seabed instability around coastal structures, Coast. Eng. J. 40(2), 131–160 (1998)

    Article  Google Scholar 

  • A.M. Mostafa, N. Mizutani, K. Iwata: Nonlinear wave, composite breakwater and seabed dynamic interaction, J. Waterw. Port Coast. Ocean Eng, ASCE 125(2), 88–97 (1999)

    Google Scholar 

  • D.-S. Jeng, D.H. Cha, Y.S. Lin, P.S. Hu: Wave-induced pore pressure around a composite breakwater, Ocean Eng. 28(10), 1413–1432 (2001)

    Article  Google Scholar 

  • M. Ulker, M.S. Rahman, M.N. Guddati: Wave-induced dynamic response and instability of seabed around caisson breakwater, Ocean Eng. 37(17/18), 1522–1545 (2010)

    Article  Google Scholar 

  • P.L.F. Liu, P. Lin, K.A. Chang, T. Sakakiyama: Numerical modelling of wave interaction with porous structures, J. Waterw. Port Coast. Ocean Eng, ASCE 125(6), 322–330 (1999)

    Google Scholar 

  • J.L. Lara, N. Garcia, I.J. Losada: RANS modeling applied to random wave interaction with submerged permeable structures, Coast. Eng. 53, 395–417 (2006)

    Article  Google Scholar 

  • D.S. Hur, C.H. Kim, J.S. Yoon: Numerical study on the interaction among a nonlinear wave, composite breakwater and sandy seabed, Coast. Eng. 57(10), 917–930 (2010)

    Article  Google Scholar 

  • S.H. Shao: Incompressible SPH flow model for wave interactions with porous media, Coast. Eng. 57, 304–316 (2010)

    Article  Google Scholar 

  • T.J. Hsu, T. Sakakiyama, P.L.F. Liu: A numerical model for wave motions and turbulence flows in front of a composite breakwater, Coast. Eng. 46, 25–50 (2002)

    Article  Google Scholar 

  • P. Lin, P.L.F. Liu: A numerical study of breaking waves in the surf zone, J. Fluid Mech. 359, 239–264 (1998)

    Article  MATH  Google Scholar 

  • D.-S. Jeng, J.H. Ye, J.-S. Zhang, P.L.F. Liu: An integrated model for the wave-induced seabed response around marine structures: Model verifications and applications, Coast. Eng. 72, 1–19 (2013)

    Article  Google Scholar 

  • J.G. Wang, B. Zhang, T. Nogami: Wave-induced seabed response analysis by radial point interpolation meshless method, Ocean Eng. 31(1), 21–42 (2004)

    Article  Google Scholar 

  • P.L.F. Liu, Y.S. Park, J.L. Lara: Long-wave-induced flows in an unsaturated permeable seabed, J. Fluid Mech. 586, 323–345 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • H.B. Lu: The Research on Pore Water Pressure Response to Waves in Sandy Seabed, Ph.D. Thesis (Changsha Univ. Science and Technology, Changsha Hunan 2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Sheng Jeng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jeng, DS. (2016). Offshore Geotechnics. In: Dhanak, M.R., Xiros, N.I. (eds) Springer Handbook of Ocean Engineering. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-16649-0_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16649-0_39

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16648-3

  • Online ISBN: 978-3-319-16649-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics