Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter describes wave, current, and wind loads on fixed or floating offshore platforms. Both linear and nonlinear waves are discussed in deterministic and irregular seas. Linear waves are written as a subset of the more general wave theory based on the perturbation method. Nonlinear waves include Stokes waves in deep waters and cnoidal and solitary waves in shallow waters. Wave loads on both large and slender structures are formulated, and solution methods, such as the Green function method, are introduced. For large structures, linear potential theory is formulated in the frequency domain. However, time-domain methods and drift loads are also discussed. For slender structures, Morison’s equation and the associated drag and inertia coefficients are introduced.

These are followed by wave–current interaction, many types of uniform and nonuniform currents, wave–current kinematics, and current-induced forces, as well as vortex-induced vibrations. A number of important quantities, such as the Doppler shift, velocity estimation through the power law, lift and drag coefficients are also introduced.

Wind forces on offshore structures are discussed through both the steady and unsteady wind profiles and forces, and through spectral analysis. Other considerations include sections on model tests and similarity laws and how various physical quantities can be scaled to prototype, both commercial and open-source computational fluid dynamics (GlossaryTerm

CFD

) tools, and extreme response estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-D:

three-dimensional

CFD:

Computational Fluid Dynamics

computational fluid dynamics

FEM:

finite element method

FORM:

first-order reliability method

GFM:

Green function method

KC:

Keulegan–Carpenter

MGSVA:

Mariano Global Surface Velocity Analysis

P–M:

Pierson–Moskowitz

RANS:

Reynolds-averaged Navier–Stokes equation

RAO:

response amplitude operator

RMS:

root mean square

TLP:

tension leg platform

VIM:

vortex-induced motion

VIV:

vortex-induced vibration

VLFS:

very large floating structure

WEC:

wave energy conversion

References

  • G.G. Stokes: On the theory of oscillatory waves, Trans. Camb. Phil. Soc. 8, 441–455 (1847)

    Google Scholar 

  • T. Levi-Civita: Determination rigoureuse des ondes permanentes d’ampleur finie, Math. Ann. 93, 264–314 (1925)

    Article  MathSciNet  MATH  Google Scholar 

  • L.W. Schwartz: Computer extension and analytic continuation of Stokes’ Expansion for gravity waves, J. Fluid Mech. 62, 553–578 (1974)

    Article  MATH  Google Scholar 

  • R.L. Wiegel: Oceanographical Engineering (Prentice-Hall, New Jersey 1964)

    Google Scholar 

  • T. Sarpkaya, M. Isaacson: Mechanics of Wave Forces on Offshore Structures (Van Nostrand Reinhold Co., New York 1981)

    Google Scholar 

  • L. Skjelbreia, J.A. Hendrickson: Fifth order gravity wave theory, Coast. Eng. Proc. (1960) pp. 184–196

    Google Scholar 

  • D.J. Korteweg, G. de Vries: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Phil. Mag. 39(5), 422–443 (1895)

    Article  MathSciNet  MATH  Google Scholar 

  • E.V. Laitone: The second approximation to cnoidal and solitary waves, J. Fluid Mech. 9, 430–444 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  • J.E. Chappelear: Shallow water waves, J. Geophys. Res. 67, 4693–4704 (1962)

    Article  MathSciNet  Google Scholar 

  • R.C. Ertekin, J.M. Becker: Nonlinear diffraction of waves by a submerged shelf in shallow water, J. Offshore Mech. Arct. Eng. 120(4), 212–220 (1998)

    Article  Google Scholar 

  • J. Boussinesq: Théorie de l’intumescence liquide appelée onde solitaire ou de translation, Comptes Rendus Acad. Sci. Paris 72, 755–759 (1871)

    MATH  Google Scholar 

  • J.D. Fenton: A ninth-order solution for the solitary wave, J. Fluid Mech. 53, 237–246 (1972)

    Article  MATH  Google Scholar 

  • A.E. Green, N. Laws, P.M. Naghdi: On the theory of water waves, Proc. R. Soc. Lond. A 338, 43–55 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  • B.B. Zhao, R.C. Ertekin, W.Y. Duan, M. Hayatdavoodi: On the steady solitary-wave solution of the Green–Naghdi equations of different levels, Wave Motion 51(8), 1382–1395 (2014)

    Article  MathSciNet  Google Scholar 

  • M.S. Denis, W.J. Pierson: On the motions of ships in confused seas, Trans. Soc. Nav. Archit. Mar. Eng. 61, 280–357 (1953)

    Google Scholar 

  • W.H. Michel: Sea spectra simplified, Mar. Technol. 5(1), 17–30 (1968)

    Google Scholar 

  • O.M. Faltinsen: Sea Loads on Ships and Offshore Structures, Ocean Technology Series (Cambridge Univ. Press, Cambridge 1990)

    Google Scholar 

  • J.N. Newman: Marine Hydrodynamics (MIT Press, Cambridge 1978)

    Google Scholar 

  • S.K. Chakrabarti: Hydrodynamics of Offshore Structures (Comput. Mechanics, Southampton 1987)

    Google Scholar 

  • L.L. Huang, H.R. Riggs: The hydrostatic stiffness of flexible floating structures for linear hydroelasticity, Mar. Struct. 13, 91–106 (2000)

    Article  Google Scholar 

  • R.C. Ertekin, H.R. Riggs, X.L. Che, S.X. Du: Efficient methods for hydroelastic analysis of very large floating structures, J. Ship Res. 37(1), 58–76 (1993)

    Google Scholar 

  • J.V. Wehausen: The motion of floating bodies, Ann. Rev. Fluid Mech. 3, 237–268 (1971)

    Article  MATH  Google Scholar 

  • H. Goldstein: Classical Mechanics, 2nd edn. (Addison-Wesley, Reading 1980)

    MATH  Google Scholar 

  • R.W. Yeung: A Singularity-Distribution Method for Free-Surface Flow Problems with an Oscillating Body, Rep. No. 73-6 (University of California, Berkeley 1973)

    Google Scholar 

  • O.M. Faltinsen, F.C. Michelsen: Motions of large structures in waves at zero Froude number, Int. Symp. Dyn. Mar. Veh. Struct. Waves (1974) pp. 91–106

    Google Scholar 

  • C.J. Garrison: Hydrodynamic loading of large offshore structures: Three-dimensional source distribution methods. In: Numerical Methods in Offshore Engineering, ed. by O.C. Zienkiewicz, R.W. Lewis, K.G. Stagg (Wiley, New York 1978)

    Google Scholar 

  • J.V. Wehausen, E.V. Laitone: Surface waves. In: Handbuch der Physik, Vol. 9, ed. by S. Flugge (Springer, Berlin, Heidelberg 1960)

    Google Scholar 

  • J.N. Newman: Algorithms for the free-surface Green function, J. Eng. Math 19, 57–67 (1985)

    Article  MATH  Google Scholar 

  • C.A. Brebbia: The Boundary Element Method for Engineers (Wiley, New York 1978)

    MATH  Google Scholar 

  • A.E. Cummins: The impulse response function and ship motions, Schiffstechnik 9(47), 101–109 (1962)

    Google Scholar 

  • T.F. Ogilvie: Recent progress toward the understanding and prediction of ship motions, Proc. 5th Symp. Nav. Hydrodyn. (1964) pp. 3–79

    Google Scholar 

  • J.O. de Kat, J.R. Paulling: The simulation of ship motions and capsizing in severe seas, Soc. Nav. Archit. Mar. Eng. 97, 139–168 (1989)

    Google Scholar 

  • R.F. Beck: Time-domain computations for floating bodies, Appl. Ocean Res. 16, 267–282 (1994)

    Article  Google Scholar 

  • J. Nolte, R.C. Ertekin: Wave power calculations for a wave energy conversion device connected to a drogue, J. Renew. Sustain Energy (AIP) 6(1), 013117-1–013117-21 (2014)

    Google Scholar 

  • H. Maruo: Thel drift of a body floating on waves, J. Ship Res. 4(1), 1–10 (1960)

    MathSciNet  Google Scholar 

  • J.N. Newman: The drift force and moment on ships in waves, J. Ship Res. 6(1), 10–17 (1967)

    Google Scholar 

  • J.A. Pinkster: Mean and low frequency wave drifting forces on floating structures, Ocean Eng. 6, 593–615 (1979)

    Article  Google Scholar 

  • C.J. Garrison: Hydrodynamic interaction of waves with a large displacement floating body, Rep. No. NPS-69GM77091 (Naval Postgraduate School, Monterey 1977)

    Google Scholar 

  • M. Takaki, Y. Tango: Wave drift forces on very huge floating structures, Int. J. Ofshore Polar Eng. 5(3), 204–211 (1995)

    Google Scholar 

  • X.Q. Liu, R.C. Ertekin, H.R. Riggs, D. Xia: Mean wave-drift loads on connected semisubmersible modules, Proc. 17th Int. Conf. Offshore Mech. Arct. Eng. (OMAE) (1998)

    Google Scholar 

  • F.H. Hsu, K.A. Blenkarn: Analysis of peak mooring forces caused by slow vessel drift oscillations in random seas, Offshore Technol. Conf. (1970) pp. 135–146

    Google Scholar 

  • J.N. Newman: Second-order slowly varying forces on vessels in irregular waves, Int. Symp. Dyn. Mar. Veh. Struct. Waves (1974) pp. 182–186

    Google Scholar 

  • J.R. Morison, M.P. O’Brien, J.W. Johnson, S.A. Schaaf: The force exerted by surface piles, Petroleum Trans. 189, 149–154 (1950)

    Article  Google Scholar 

  • R.C. MacCamy, R.A. Fuchs: Wave Forces on Piles: A Diffraction Theory, Tech. Memo. No. 69 Beach Erosion Board (Army Corps of Engineers, Washington 1954)

    Google Scholar 

  • G.H. Keulegan, L.H. Carpenter: Forces on cylinders and plates in an oscillating fluid, J. Res. Nat. Bureau Stand. 60(5), 423–440 (1958)

    Article  Google Scholar 

  • M. de S.Q. Isaacson: Wave Induced Forces in the Diffraction Regime. In: Mechanics of Wave-Induced Forces on Cylinders, ed. by T.L. Shaw (Pitman, London 1979) pp. 68–89

    Google Scholar 

  • J.R. Paulling: Frequency-domain analysis of otec CW pipe and platform dynamics, Offshore Technol. Conf. (1979) pp. 1641–1651

    Google Scholar 

  • J.R. Paulling: An equivalent linear representation of the forces exerted on the OTEC CW pipe by combined effects of waves and current, Ocean Eng. OTEC (1979) pp. 21–28

    Google Scholar 

  • L.P. Krolikowski, T.A. Gay: An improved linearization technique of frequency domain riser analysis, Offshore Technol. Conf. (1980) pp. 341–353

    Google Scholar 

  • T. Sarpkaya: Wave Forces on Offshore Structures, 1st edn. (Cambridge Univ. Press, Cambridge 2010)

    Book  Google Scholar 

  • T. Sarpkaya: In-Line and Transverse Forces on Smooth and Sand-Roughned Cylinders in Oscillatory Flow at High Reynolds Numbers , Rep. No. NPS-69SL76062 (Naval Post Graduate School, Monterey 1976)

    Google Scholar 

  • DNV: Recommended Practice DNV-RP-025. Environmental Conditions and Environmental Loads (Det Norske Veritas, Høvik 2010)

    Google Scholar 

  • S.K. Chakrabarti: Steady drift force on vertical cylinder–viscous vs. potential, Appl. Ocean Res. 6, 73–82 (1984)

    Article  Google Scholar 

  • G.E. Burns: Calculating viscous drift of a tension leg platform, Proc. 2nd Int. Offshore Mech. and Arct. Eng. Conf., ASME, Houston (1983) pp. 22–30

    Google Scholar 

  • D.L.R. Botelho, T.D. Finnigan, C. Petrauskas, S.M. Lui: Model test evaluation of a frequency-domain procedure for extreme surge response prediction of tension leg platforms, Proc. 16th Annual Offshore Technol. Conf., Houston, Texas OTC 4658 (1984) pp. 105–112

    Google Scholar 

  • R.C. Ertekin, A.S. Chitrapu: Wave- and current-induced viscous drift forces on floating platforms, Proc. 6th Int. Symp. Offshore Eng. (1987) pp. 625–629

    Google Scholar 

  • A.S. Chitrapu, R.C. Ertekin, J.R. Paulling: Viscous drift forces in regular and irregular waves, Ocean Eng. 20(1), 33–55 (1993)

    Article  Google Scholar 

  • Y. Li, A. Kareem: A description of hydrodynamic forces on tension leg platforms using a multivariate Hermite expansion, Proc. 9th Int. Offshore Mech. Arct. Eng. Conf. (1990) pp. 133–142

    Google Scholar 

  • P.D. Spanos, M.G. Donley: Stochastic response of a tension leg platform to viscous drift forces, Proc. 9th Int. Offshore Mech. Arct. Eng. Conf. (1990) pp. 107–114

    Google Scholar 

  • NDBC: Does NDBC measure ocean current velocities?, http://www.ndbc.noaa.gov/adcp.shtml (2013)

  • B. Bischof, E. Rowe, A.J. Mariano, E.H. Ryan: The Brazil current, http://oceancurrents.rsmas.miami.edu/atlantic/brazil.html (2004)

  • G.Z. Forristall, C.K. Cooper: Design current profiles using Empirical Orthogonal Functions (EOF) and Inverse FORM methods, Offshore Technol. Conf. (1997)

    Google Scholar 

  • J.T. Kirby, T.M. Chen: Surface waves on vertically sheared flows, approximate dispersion relations, J. Geophys. Res. 94(C1), 1013–1027 (1989)

    Article  Google Scholar 

  • R.A. Dalrymple, J.C. Heideman: Non-linear water waves on a vertically-sheared current, E&P Forum Workshop (1989)

    Google Scholar 

  • J.W. Eastwood, C.J.H. Watson: Implications of wave-current interactions for offshore design, E&P Forum Workshop (1989)

    Google Scholar 

  • J.D. Wheeler: Method for calculating force produced by irregular waves, J. Petroleum Tech. 22, 473–486 (1970)

    Article  Google Scholar 

  • A.R.Pf. Planning: Designing and Constructing Fixed Offshore Platforms: Working Stress Design, 21st edn. (American Petroleum Institute, Washington 2000)

    Google Scholar 

  • H. Schlichting: Boundary Layer Theory, 2nd edn. (McGraw-Hill, New York 1968)

    MATH  Google Scholar 

  • R.D. Blevins: Flow-Induced Vibration, 2nd edn. (Van Nostrand Reinhold, New York 1990)

    MATH  Google Scholar 

  • DNV: Recommended Practice DNV-RP-F105. Free Spanning Pipelines (Det Norske Veritas, Nøvik 2006)

    Google Scholar 

  • DNV: Recommended Practice DNV-RP-F204. Riser Fatigue (Det Norske Veritas, Nøvik 2005)

    Google Scholar 

  • NRCS: Wind Rose Data, http://www.wcc.nrcs.usda.gov/climate/windrose.html (2002)

  • O.J. Andersen, J. Løvseth: The Frøya database and maritime boundary layer wind description, Mar. Struct. 19(2/3), 173–192 (2006)

    Article  Google Scholar 

  • S.K. Chakrabarti: Offshore Structure Modeling (World Scientific, Singapore 1994)

    MATH  Google Scholar 

  • E. Buckingham: On physically similar systems; illustrations of the use of dimensional equations, Phys. Rev. 4(4), 345–376 (1914)

    Article  Google Scholar 

  • R.C. Ertekin, J.W. Kim (Eds.): The Proceedings of 3rd International Workshop on Very Large Floating Structures (VLFS ’99) (SOEST, Honolulu 1999)

    Google Scholar 

  • J.T. Dillingham: Recent experience in model-scale simulation of tension-leg platforms, Mar. Technol. 21(2), 186–200 (1984)

    Google Scholar 

  • M.P. Tulin: Hydroelastic scaling, Proc. 3rd Int. Workshop Very Large Float. Struct. (VLFS) (1999) pp. 483–487

    Google Scholar 

  • S.A. Hughes: Physical Models and Laboratory Techniques in Coastal Engineering (World Scientific, Singapore 1993)

    Google Scholar 

  • W.Y. Duan: Report of the 1st workshop on numerical wave tank, Int. Theory Advis. Panel Numer. Tank (College of Shipbuilding Engineering, Harbin Engineering University, Harbin, China 2014)

    Google Scholar 

  • M.A. Benitz, D.P. Schmidt, M.A. Lackner, G.M. Stewart, J. Jonkman, A. Robertson: Comparison of hydrodynamic load predictions between engineering models and computational fluid dynamics for the Oc4-DeepCWind semi-submersible, Proc. 33rd Int. Offshore Mech. Arct. Eng. Conf. (OMAE) (2014)

    Google Scholar 

  • B. Seiffert, M. Hayatdavoodi, R.C. Ertekin: Experiments and computations of solitary-wave forces on a coastal-bridge deck. Part I: Flat plate, Coast. Eng. 88, 194–209 (2014)

    Article  Google Scholar 

  • S. Norway: NORSOK Standard N-003: Actions and action effects (Standards Norway, Lysaker 2007)

    Google Scholar 

  • A. Moros, P. Fairhurst: Production riser design: Integrated approach to flow, mechanical issues, Offshore Mag. 59(4), 82 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Cengiz Ertekin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ertekin, R.C., Rodenbusch, G. (2016). Wave, Current and Wind Loads. In: Dhanak, M.R., Xiros, N.I. (eds) Springer Handbook of Ocean Engineering. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-16649-0_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16649-0_35

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16648-3

  • Online ISBN: 978-3-319-16649-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics