Skip to main content

Cooperative Vehicle Target Tracking

  • Chapter
Springer Handbook of Ocean Engineering

Part of the book series: Springer Handbooks ((SHB))

Abstract

As autonomous ocean vehicles become more affordable and reliable, applications of multivehicle teams become more feasible. Cooperative vehicle target tracking is a promising application since in many sport, military, and biological endeavors cooperative strategies have proven themselves to be advantageous over noncooperative strategies. The sophistication of winning human team interactions indicates the challenge inherent in programming a fleet of autonomous vehicles to work cooperatively to effectively and efficiently accomplish a goal. For a multivehicle team operating in the continuous and transient ocean environment, meeting this challenge involves optimizing a high-dimensional parameter space, even more so in cases when the target has the ability to make intelligent choices to avoid being tracked. In this chapter, recent progress to construct a theoretical framework and recent applications for maritime surveillance are presented. A methodology is developed that can help bridge the gap between the top-down view starting with theoretical concepts and the bottom-up view dealing with all details of real experimentation and execution at sea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AIS:

automatic identification system

AUV:

autonomous underwater vehicle

CA:

cellular automata

CE:

control and estimation

DEC-POMDP:

decentralized partially observable Markov decision process

HF:

high frequency

LFCTT:

low-frequency cooperative target tracking

MAS:

multiagent system

PDF:

probability density function

PGM:

probabilistic graphical model

POMDP:

partially observable Markov decision process

POSG:

partially observable stochastic games

SAT:

satellite communication

UAV:

unmanned aerial vehicle

UHF:

ultra high frequency

VHF:

very high frequency

References

  • T.B. Curtin, D.M. Crimmins, J. Curcio, M. Benjamin, C. Roper: Autonomous underwater vehicles: Trends and transformations, Mar. Technol. Soc. J. 39(3), 65–75 (2005)

    Article  Google Scholar 

  • Department of Defense: Unmanned systems integrated roadmap FY2013-2038 (2013) http://www.defense.gov/pubs/DOD-USRM-2013.pdf

  • Y.U. Cao, A.S. Fukunaga, A.B. Kahng: Cooperative mobile robotics: Antecedents and directions, Auton. Robots 4, 1–23 (1997)

    Article  Google Scholar 

  • M.A. Hsieh, A. Cowley, J.F. Keller, L. Chaimowicz, B. Grocholsky, V. Kumar, C.J. Taylor, Y. Endo, R.C. Arkin, B. Jung, D.F. Wolf, G.S. Sukhatme, D.C. MacKenzie: Adaptive teams of autonomous aerial and ground robots for situational awareness, J. Field Robotics 24(11/12), 991–1014 (2007)

    Article  Google Scholar 

  • J.K. Hedrick, B. Basso, J. Love, B.M. Lavis: Tools and techniques for mobile sensor network control, J. Dyn. Syst. Meas. Control 133, 24001–24005 (2011)

    Article  Google Scholar 

  • N. Carlesi, F. Michel, B. Jouvencel, J. Ferber: Generic architecture for multi-AUV cooperation based on a multi-agent reactive organizational approach, Proc. IROS’11 (2011) pp. 5041–5047

    Google Scholar 

  • J. Liu, M. Chu, J.E. Reich: Multitarget tracking in distributed sensor network, IEEE Signal Process. Mag. 37, 36–46 (2007)

    Article  Google Scholar 

  • X. Zhao, S.Y. Tu, A.H. Sayed: Diffusion adaptation over networks under imperfect information exchange and non-stationary data, IEEE Trans. Signal Process. 60(7), 3460–3475 (2012)

    Article  MathSciNet  Google Scholar 

  • L.E. Parker: Distributed intelligence: Overview of the field and its application in multi-robot systems, J. Phys. Agents 2(1), 5–14 (2008)

    Google Scholar 

  • D.P. Eickstedt, M.R. Benjamin, H. Schmidt, J.J. Leonard: Adaptive tracking of underwater targets with autonomous sensor networks, J. Underw. Acoust. 56, 465–495 (2006)

    Google Scholar 

  • P. Ray, P.K. Varshney: Distributed detection in wireless sensor networks using dynamic sensor thresholds, Int. J. Distrib. Sens. Netw. 4, 4–11 (2008)

    Article  Google Scholar 

  • C.D. Charalambous: Stochastic nonlinear minimax dynamic games with noisy measurements, IEEE Trans. Autom. Control 48(2), 261–266 (2003)

    Article  MathSciNet  Google Scholar 

  • H.S. Witsenhausen: Separation of estimation and control for discrete time systems, Proceedings IEEE 59(11), 1557–1566 (1971)

    Article  MathSciNet  Google Scholar 

  • F. Morbidi, G.L. Mariottini: Active target tracking and cooperative localization for teams of aerial vehicles, IEEE Trans. Control Syst. Technol. 21(5), 1694–1707 (2013)

    Article  Google Scholar 

  • L.C.A. Pimenta, V. Kumar, R.C. Mesquita, G.A.S. Pereira: Sensing and coverage for a network of heterogeneous robots, Proc. 47th CDC (2008) pp. 3947–3952

    Google Scholar 

  • Z. Xu, R. Fitch, S. Sukkarieh: Learning utility models for decentralised coordinated target tracking, Proc. IEEE ICRA’12 (2012) pp. 1753–1759

    Google Scholar 

  • L.E. Parker, C. Touzet, F. Fernandez: Techniques for learning in multi-robot teams. In: Robot Teams: From Diversity to Polymorphism, ed. by T. Balch, L.E. Parker (A K Peters, Natick 2002)

    Google Scholar 

  • T. Kaiser, A. Bourdoux, H. Boche, J.R. Fonollosa, J.B. Andersen, W. Utschick (Eds.): Smart Antennas – State of the Art, EURASIP Book Series on Signal Processing and Communications (Hindawi, New York 2005)

    Google Scholar 

  • P. Aarabi: The fusion of distributed microphone arrays for sound localization, EURASIP J. Appl. Signal Process. 4, 338–347 (2003)

    Article  MATH  Google Scholar 

  • V.A. Ziparo, L. Iocchi, P.U. Lima, D. Nardi, P.F. Palamara: Petri net plans – A framework for collaboration and coordination in multi-robot systems, Auton. Agent Multi-Agent Syst. 23, 344–383 (2011)

    Article  Google Scholar 

  • R. He, A. Bachrach, N. Roy: Efficient planning under uncertainty for a target-tracking micro-aerial vehicle, Proc. IEEE ICRA’10 (2010) pp. 1–8

    Google Scholar 

  • A. Ghafforkha, Y. Mostifi: Path planning for networked robotic surveillance, IEEE Trans. Signal Process. 60(7), 3560–3575 (2012)

    Article  MathSciNet  Google Scholar 

  • D. Koller, B. Milch: Multi-agent influence diagrams for representing and solving games, Proc. 17th Int. Jt. Conf. Artif. Intell. (IJCAI) (2001) pp. 1027–1034

    Google Scholar 

  • W. Yeoh, A. Kumar, S. Zilberstein: Automated generation of interaction graphs for value-factored decentralized POMDPs, Proc. Int. Jt. Conf. Artif. Intell. (IJCAI) (2013) pp. 411–417

    Google Scholar 

  • S.S. Nestinger, M.A. Demetriou: Adaptive collaborative estimation of multi-agent mobile robotic systems, Proc. IEEE ICRA’12 (2012) pp. 1856–1861

    Google Scholar 

  • S.A. Miller, Z.A. Harris, E.K.P. Chong: A POMDP framework for coordinated guidance of autonomous UAVs for multitarget tracking, EURASIP J. Adv. Signal Process. 2009, 724597 (2009)

    Article  MATH  Google Scholar 

  • S. Seuken, S. Zilberstein: Formal models and algorithms for decentralized decision making under uncertaintly, Auton. Agent Multi-Agent Syst. 17(2), 190–250 (2008)

    Article  Google Scholar 

  • S.J. Witwicki, E.H. Durfee: Flexible approximation of structured interactions in decentralized markov decision processes, Proc. AAMAS 2, 1251–1252 (2009)

    Google Scholar 

  • F. Oliehoek: The multi agent decision process toolbox (2015) http://www.fransoliehoek.net/index.php?fuseaction=software.madp

  • G. Gottlob, G. Greco, T. Mancini: Complexity of pure equilibria in Bayesian games, Proc. Int. Jt. Conf. Artif. Intell. (IJCAI) (2007) pp. 1294–1299

    Google Scholar 

  • R.R. Brooks: Sensor network self-organization using random graphs, Int. J. Distrib. Sens. Netw. 5, 201–208 (2009)

    Article  Google Scholar 

  • M. Zhu, R.R. Brooks: Comparison of Petri net and finite state machine discrete event control of distributed surveillance networks, Int. J. Distrib. Sens. Netw. 5, 480–501 (2009)

    Article  Google Scholar 

  • B. Lindley, L. Mier-y-Teran-Romero, I.B. Schwartz: Randomly distributed delayed communication and coherent swarm patterns, Proc. IEEE ICRA’12 (2012) pp. 4260–4265

    Google Scholar 

  • D. Koller, N. Friedman: Probabilistic Graphical Models: Principles and Techniques (MIT, Cambridge 2009)

    MATH  Google Scholar 

  • Y. Gal, A. Pfeffer: Networks of influence diagrams: A formalism for representing agents beliefs and decision-making processes, J. Artif. Intell. Res. 33, 109–147 (2008)

    MathSciNet  MATH  Google Scholar 

  • A. Pfeffer, S. Das, D. Lawless, B. Ng: Factored reasoning for monitoring team and goal formation, Inform. Fus. 10, 99–106 (2009)

    Article  Google Scholar 

  • Y. Gal, B. Grosz, S. Kraus, A. Pfeffer, S. Shieber: Agent decision-making in open mixed networks, Artif. Intell. 174(18), 1460–1480 (2010)

    Article  MathSciNet  Google Scholar 

  • V. Indelman, P. Gurfil, E. Rivlin, H. Rotstein: Graph-based distributed cooperative navigation for a general multi-robot measurement model, Int. J. Robotics Res. 31(9), 1057–1080 (2012)

    Article  Google Scholar 

  • F. Ehlers: Particle filter for information management in an autonomously operating activated distributed sensor network, OCEANS 2007-Europe (2007) pp. 1–6

    Chapter  Google Scholar 

  • P. Dames, V. Kumar: Technical report: Cooperative multi-target localization with noisy sensors, Proc. IEEE ICRA’13 (2013) pp. 1877–1883

    Google Scholar 

  • N. Kantas, S.S. Singh, A. Doucet: Distributed maximum likelihood for simultaneous self-localization and tracking in sensor networks, IEEE Trans. Signal Process. 60, 5038–5047 (2012)

    Article  MathSciNet  Google Scholar 

  • C. Reinl: Trajektorien- und Aufgabenplanung kooperierender Fahrzeuge: Diskret-kontinuierliche Modellierung und Optimierung, Ph.D. Thesis (TU Darmstadt, Darmstadt 2010)

    Google Scholar 

  • D.J. Molinares: A Data Link Layer in Support of Swarming of Autonomous Underwater Vehicles, Ph.D. Thesis (University of South Florida, Tampa 2009)

    Google Scholar 

  • P. Dames, M. Schwager, V. Kumar, D. Rus: A decentralized control policy for adaptive information gathering in hazardous environments, Proc. 51st CDC (2012) pp. 2807–2813

    Google Scholar 

  • B.J. Julian, M. Angermann, M. Schwager, D. Rus: A scalable information theoretic approach to distributed robot coordination, Proc. IROS’11 (2011) pp. 5187–5194

    Google Scholar 

  • W. Ren, R.W. Beard: Distributed Consensus in Multi-vehicle Cooperative Control, Communications and Control Engineering Series (Springer, London 2008)

    Book  MATH  Google Scholar 

  • L. Kester: Interactive collaborative information systems, Method for designing networking adaptive interactive hybrid systems, Stud. Comput. Intell. 281, 401–421 (2010)

    Article  Google Scholar 

  • T.H. Chung, G.A. Hollinger, V. Isler: Search and pursuit-evasion in mobile robotics. A survey, Auton. Robots 31(4), 299–316 (2011)

    Article  Google Scholar 

  • B. Schmidt, L. Newman: MOOS nested autonomy for unmanned marine vehicles with MOOS-IvP, J. Field Robotics, J. Field Robotics 27(6), 834–875 (2010)

    Article  Google Scholar 

  • A. Kimmel, A. Dobson, Z. Littlefield, A. Krontiris, J.D. Marble, K.E. Bekris: Pracsys: An extensible architecture for composing motion controllers and planners, Lect. Notes. Comput. Sci. 7628, 137–148 (2012)

    Article  Google Scholar 

  • D.T. Cole: A Cooperative UAS Architecture for Information-Theoretic Search and Track, Ph.D. Thesis (University of Sydney, Sydney 2009)

    Google Scholar 

  • B. Jung: Cooperative Target Tracking Using Mobile Robots, Ph.D. Thesis (University of Southern California, Los Angeles 2005)

    Google Scholar 

  • J. Fuemmeler, V.V. Veeravalli: Smart sleeping policies for energy-efficient tracking in sensor networks. In: Networked Sensing Information and Control, ed. by V. Saligrama (Springer, New York 2008) pp. 267–287

    Chapter  Google Scholar 

  • S. Coraluppi: Multistatic Sonar Localization, IEEE JOE 31(4), 964–974 (2006)

    Google Scholar 

  • S. Coraluppi, C. Carthel: Distributed tracking in multistatic sonar, IEEE Trans. Aerosp. Electron. Syst. 41(3), 1138–1147 (2005)

    Article  Google Scholar 

  • M. Daun, F. Ehlers: Tracking algorithms for multistatic sonar systems, EURASIP J. Adv. Signal Process. 2010, 46153 (2010)

    Article  Google Scholar 

  • F. Ehlers, D. Orlando, G. Ricci: Batch tracking algorithm for multistatic sonars, IET Radar Sonar Navig. 6(8), 746–752 (2012)

    Article  Google Scholar 

  • R.L. Streit: Multistatic target and sensor field tracking, Proc. IEEE Aerosp. Conf. (2006) pp. 1–12

    Google Scholar 

  • W3C Semantic Sensor Network Incubator Group: Semantic Sensor Network XG Final Report (2011) http://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628/

  • M. Daun, L. Broetje, F. Ehlers: Simultaneous localisation and tracking, Proc. UAM (2011)

    Google Scholar 

  • R.P. Hodges: Underwater Acoustics Analysis, Design And Performance Of Sonar (Wiley, Hoboken 2010)

    Book  Google Scholar 

  • D.P. Eickstedt, H. Schmidt: A low-frequency sonar for sensor-adaptive, multi-static, detection and classification of underwater targets with AUVs, Proc. IEEE OCEANS’03 (2003) pp. 1440–1447

    Google Scholar 

  • S. Kemna, M. Hamilton, K. Lepage, D.T. Hughes: Adaptive behaviours for autonomous underwater vehicles in anti-submarine warfare, Intell. Serv. Robotics 4(4), 245–258 (2011)

    Article  Google Scholar 

  • S. Kemna, M.J. Hamilton, D.T. Hughes, R. Been: Behavior Development for Anti-Submarine Warfare: The GLINT09 and GLINT10 Field Trials (MOOS-DAWG, MIT, Cambridge 2010)

    Google Scholar 

  • M. Hamilton, S. Kemna, D. Hughes: Information theory based multi-vehicle collaboration for multi-static sonar using MOOS-IvP (MOOS-DAWG, MIT, Cambridge 2010)

    Google Scholar 

  • P. Zhan, D.W. Casbeer, A.L. Swindlehurst: Adaptive mobile sensor positioning for multi-static target tracking, IEEE Trans. Aerosp. Electron. Syst. 46(1), 120–132 (2010)

    Article  Google Scholar 

  • P. Zhan, D.W. Casbeer, A.L. Swindlehurst: A centralized control algorithm for target tracking with UAVs, Proc. 39th Asilomar Conf. Signals Syst. Comput. (2005) pp. 1148–1152

    Google Scholar 

  • A. Marino, G. Antonelli, A.P. Aguiar, A. Pascoal: A new approach to multi-robot harbour patrolling: Theory and experiments, Proc. IROS’12 (2012) pp. 1760–1765

    Google Scholar 

  • Y. Hu, B. Ksherim, R. Cohen, S. Havlin: Percolation in interdependent and interconnected networks: Abrupt change from second- to first-order transitions, Phys. Rev. E 84, 066116 (2011)

    Article  Google Scholar 

  • F.M. Mirzaei, A.I. Mourikis, S.I. Roumeliotis: On the performance of multi-robot target tracking, Proc. IEEE ICRA’07 (2007) pp. 3482–3489

    Google Scholar 

  • W.D. McComb: Renormalization Methods (Oxford Univ. Press, Oxford 2004)

    MATH  Google Scholar 

  • D. Sangiorgi, J. Rutten (Eds.): Advanced Topics in Bisimulation and Coinduction, Cambridge Tracts in Theoretical Computer Science, Vol. 52 (Cambridge Univ. Press, Cambridge 2011)

    MATH  Google Scholar 

  • E. Bovio, H. Schmidt: The GOATS joint research project: Underwater vehicle networks for acoustic and oceanographic measurements in the littoral ocean, Goats 2000, SACLANTCEN CP-46, ed. by E. Bovio, R. Tyce, H. Schmidt (2001) pp. 3–16

    Google Scholar 

  • F. Ehlers: Coordinated distributed mobile sensors and how to measure their performance, Proc. Sens. Data Fusion (2011)

    Google Scholar 

  • F. Ehlers: Multi-agend system for multistatic sonar, Workshop Mach. Intell. (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Ehlers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ehlers, F. (2016). Cooperative Vehicle Target Tracking. In: Dhanak, M.R., Xiros, N.I. (eds) Springer Handbook of Ocean Engineering. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-16649-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16649-0_22

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16648-3

  • Online ISBN: 978-3-319-16649-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics