Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

In this chapter, we discuss acoustic communication methods which are used to provide wireless connection between remote nodes operating in an underwater environment. We begin with an introductory overview of the history of acoustic communication, and an outline of current and emerging applications. We then provide a summary of communication channel characteristics, with an eye towards acoustic propagation mechanisms and the ways in which they differ from radio propagation. The main focus of our treatment is on two major aspects of communication system design: the physical link and the networking functions. On the physical link level, we discuss noncoherent and coherent modulation/detection methods, paying attention to both single-carrier modulation and multicarrier broadband techniques. Specifically, we discuss signal processing methods for synchronization, equalization, and multichannel (transmit and receive) combining. On the networking level, we discuss protocols for channel sharing using both deterministic division of resources (frequency, time, and code-division multiple access) and random access, and we also overview recent results on routing for peer-to-peer acoustic networks. We conclude with an outline of topics for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AM:

analog modulation

ARQ:

automatic repeat request

AUV:

autonomous underwater vehicle

BCH:

Bose-Chaudhuri-Hocquenghem

CCL:

compact control language

CDMA:

code-division multiple access

CSMA:

carrier sensing multiple access

CTS:

clear-to-send

DAB:

digital audio broadcast

DATS:

digital acoustic telemetry system

DFE:

decision-feedback equalizer

DS-SS:

direct-sequence spread-spectrum

DTN:

delay-tolerant network

DVB:

digital video broadcast

FDMA:

frequency-division multiple access

FEC:

forward error coding

FFT:

fast Fourier transform

FSK:

frequency shift keying

ICI:

inter-carrier interference

ISI:

inter-symbol interference

LDPC:

low-density parity-check

LPD:

low probability of detection

MACA:

multiple-access collision avoidance

MAC:

medium access control

MIMO:

multi-input multi-output

MSE:

mean squared error

OFDM:

orthogonal frequency division multiplexing

PDF:

probability density function

PLL:

phase-locked loop

PPP:

point-to-point protocol

PSD:

power spectral density

PSK:

phase shift keying

QAM:

quadrature amplitude modulation

QPSK:

quadrature amplitude modulation

RLS:

recursive least square

ROV:

remotely operated vehicle

RS:

Reed–Solomon

RTS:

request-to-send

SNR:

signal-to-noise ratio

TDD:

time division duplexing

TDMA:

time division multiple access

UUV:

unmanned underwater vehicle

References

  • X. Che, I. Wells, G. Dickers, P. Kear, X. Gong: Re-evaluation of RF electromagnetic communication in underwater sensor networks, IEEE Commun. Mag. 48(12), 143–151 (2010)

    Article  Google Scholar 

  • N. Farr, A. Bowen, J. Ware, C. Pontbriand, M. Tivey: An integrated, underwater optical /acoustic communications system, Proc. IEEE OCEANS'10 (2010) pp. 1–6

    Google Scholar 

  • L. Freitag, S. Singh: Performance of micro-modem PSK signaling under variable conditions during the 2008 RACE and SPACE experiments, Proc. MTS/IEEE OCEANS'09 (2009) pp. 1–8

    Google Scholar 

  • L. Freitag, M. Stojanovic: Basin-scale acoustic communication: a feasibility study using tomography m-sequences, Proc. MTS/IEEE OCEANS'01, Vol. 4 (2001) pp. 2256–2261

    Google Scholar 

  • L. Freitag, M. Johnson, D. Frye: High-rate acoustic communications for ocean observatories-performance testing over a 3000  vertical path, Proc. MTS/IEEE OCEANS'00, Vol. 2 (2000) pp. 1443–1448

    Google Scholar 

  • A. Quazi, W. Konrad: Underwater acoustic communications, IEEE Commun. Mag. 20(2), 24–30 (1982)

    Article  Google Scholar 

  • A.B. Baggeroer, D.E. Koelsch, K. von der Heydt, J. Catipovic: DATS - A digital acoustic telemetry system for underwater communications, Proc. IEEE OCEANS'81 (1981) pp. 55–60

    Chapter  Google Scholar 

  • J. Catipovic, D. Brady, S. Etchemendy: Development of underwater acoustic modems and networks, Oceanography 6(3), 112–119 (1993)

    Article  Google Scholar 

  • M.D. Green, J.A. Rice: Channel-tolerant FH-MFSK acoustic signaling for undersea communications and networks, IEEE-JOE 25(1), 28–39 (2000)

    Google Scholar 

  • M. Stojanovic, J.A. Catipovic, J.G. Proakis: Phase-coherent digital communications for underwater acoustic channels, IEEE-JOE 19(1), 100–111 (1994)

    Google Scholar 

  • S. Singh, S.E. Webster, L. Freitag, L.L. Whitcomb, K. Ball, J. Bailey, C. Taylor: Acoustic communication performance of the WHOI micro-modem in sea trials of the Nereus vehicle to 11,000 m depth, Proc. IEEE OCEANS'09 (2009) pp. 1–6

    Google Scholar 

  • J.R. Potter, A. Berni, J. Alves, D. Merani, G. Zappa, R. Been: Underwater communications protocols and architecture developments at NURC, Proc. IEEE OCEANS'11 (2011) pp. 1–6

    Google Scholar 

  • V. Tunnicliffe, C.R. Barnes, R. Dewey: Major advances in cabled ocean observatories (VENUS and NEPTUNE Canada) in coastal and deep sea settings, Proc. IEEE/OES US/EU-Balt. Int. Symp. (2008) pp. 1–7

    Google Scholar 

  • T.B. Curtin, J.G. Bellingham, J. Catipovic, D. Webb: Autonomous oceanographic sampling networks, Oceanography 6(3), 86–94 (1993)

    Article  Google Scholar 

  • Teledyne Benthos: https://teledynebenthos.com/product/acoustic_modems/910-series-atm-916

  • Woods Hole Oceanographic Institution: http://acomms.whoi.edu/micro-modem

  • LinkQuest Inc.: http://www.link-quest.com/html/uwm1000.htm

  • EvoLogics: http://www.evologics.de/en/products/acoustics/index.html

  • Sercel: http://www.sercel.com/products/Pages/mats3g.aspx

  • L-3 Oceania: http://www2.l-3com.com/oceania/products/uc_modem.htm

  • Tritech: http://www.tritech.co.uk/product/micron-data-modem

  • P.-P.J. Beaujean, E. Carlson: HERMES – A high bit-rate underwater acoustic modem operating at high-frequencies for ports and shallow water applications, Mar. Technol. Soc. J. 43(2), 21–32 (2009)

    Article  Google Scholar 

  • R.P. Stokey, L.E. Freitag, M.D. Grund: A compact control language for AUV acoustic communication, Proc. IEEE OCEANS'05 (2005) pp. 1133–1137

    Google Scholar 

  • D.B. Kilfoyle, A.B. Baggeroer: The state of the art in underwater acoustic telemetry, IEEE-JOE 25(1), 4–27 (2000)

    Google Scholar 

  • R.J. Urick: Principles of Underwater Sound, 3rd edn. (McGraw-Hill, New York 1983)

    Google Scholar 

  • H. Medwin, C.S. Clay: Fundamentals of Acoustical Oceanography (Applications of Modern Acoustics) (Academic Press, Waltham 1998)

    Google Scholar 

  • M.B. Porter, V.K. McDonald, P.A. Baxley, J.A. Rice: SignalEx: Linking environmental acoustics with the signaling schemes, Proc. MTS/IEEE OCEANS'00 (2000) pp. 595–600

    Google Scholar 

  • J.A. Rice, C.W. Ong: A discovery process for initializing underwater acoustic networks, Proc. SENSORCOMM (2010) pp. 408–415

    Google Scholar 

  • L. Berkhovskikh, Y. Lysanov: Fundamentals of Ocean Acoustics, Springer Series in Electronics and Photonics, Vol. 8 (Springer, Berlin, Heidelberg 1982)

    Book  Google Scholar 

  • M. Stojanovic: On the relationship between capacity and distance in an underwater acoustic communication channel, Proc. WUWNet (2006) pp. 41–47

    Chapter  Google Scholar 

  • M. Stojanovic: Capacity of a relay acoustic channel, Proc. IEEE OCEANS'07 (2007) pp. 1–7

    Google Scholar 

  • M.Porter: Ocean Acoustics Library, http://oalib.hlsresearch.com/ (2015)

  • M.B. Porter, H.P. Bucker: Gaussian beam tracing for computing ocean acoustic fields, J. Acoust. Soc. Am. 82(4), 1349–1359 (1987)

    Article  Google Scholar 

  • M. Siderius, M.B. Porter: Modeling broadband ocean acoustic transmissions with time-varying sea surfaces, J. Acoust. Soc. Am. 124, 137–150 (2008)

    Article  Google Scholar 

  • F.F. Jensen, W. Kuperman, M. Porter, H. Schmidt: Computational Ocean Acoustics, Modern Acoustics and Signal Processing (Springer, New York 2011)

    Book  MATH  Google Scholar 

  • M. Stojanovic: Efficient processing of acoustic signals for high rate information transmission over sparse underwater channels, Phys. Commun. 1(2), 146–161 (2008)

    Article  Google Scholar 

  • W. Li, J.C. Preisig: Estimation of rapidly time-varying sparse channels, IEEE-JOE 32(4), 927–939 (2007)

    Google Scholar 

  • S. Roy, T.M. Duman, V.K. McDonald: Error rate improvement in underwater MIMO communications using sparse partial response equalization, IEEE-JOE 34(2), 181–201 (2009)

    Google Scholar 

  • J.W. Choi, T.J. Riedl, K. Kim, A.C. Singer, J.C. Preisig: Adaptive linear turbo equalization over doubly selective channels, IEEE-JOE 36(4), 473–489 (2011)

    Google Scholar 

  • M. Stojanovic: MIMO OFDM over underwater acoustic channels, Proc. 43rd Asilomar Conf. Signals Syst. Comput. (2009) pp. 605–609

    Google Scholar 

  • C.R. Berger, S. Zhou, J.C. Preisig, P. Willett: Sparse channel estimation for multicarrier underwater acoustic communication: From subspace methods to compressed sensing, IEEE Trans. Sig. Process. 58(3), 1708–1721 (2010)

    Article  MathSciNet  Google Scholar 

  • T. Kang, R.A. Iltis: Iterative carrier frequency offset and channel estimation for underwater acoustic OFDM systems, IEEE J. Sel. Areas Commun. 26(9), 1650–1661 (2008)

    Article  Google Scholar 

  • M.M. Stojanovic, J. Catipovic, J. Proakis: Performance of High-Rate Adaptive Equalization on a Shallow Water Acoustic Channel, J. Acoust. Soc. Am. (1996) pp. 2213–2219

    Google Scholar 

  • M. Stojanovic: Low complexity OFDM detector for underwater acoustic channels, Proc. IEEE OCEANS'06 (2006) pp. 1–6

    Google Scholar 

  • P. Qarabaqi, M. Stojanovic: Statistical characterization and computationally efficient modeling of a class of underwater acoustic communication channels, IEEE-JOE 38(4), 701–717 (2013)

    Google Scholar 

  • W.B. Yang, T.C. Yang: High-frequency channel characterization for M-ary frequency-shift-keying underwater acoustic communications, J. Acoust. Soc. Am. 120(5), 2615–2626 (2006)

    Article  Google Scholar 

  • B. Tomasi, G. Zappa, K. McCoy, P. Casari, M. Zorzi: Experimental study of the space-time properties of acoustic channels for underwater communications, Proc. IEEE OCEANS'10 (2010) pp. 1–9

    Google Scholar 

  • A. Radosevic, D. Fertonani, T.M. Duman, J.G. Proakis, M. Stojanovic: Capacity of MIMO systems in shallow water acoustic channels, Proc. 44th Asilomar Conf. Sig. Syst. Comput. (2010) pp. 2164–2168

    Google Scholar 

  • F. Socheleau, C. Laot, J. Passerieux: Stochastic replay of non-WSSUS underwater acoustic communication channels recorded at sea, IEEE Trans. Signal Process. 59(10), 4838–4849 (2011)

    Article  MathSciNet  Google Scholar 

  • M. Chitre: A high-frequency warm shallow water acoustic communications channel model and measurements, J. Acoust. Soc. Am. 122(5), 2580–2586 (2007)

    Article  Google Scholar 

  • J. Zhang, J. Cross, Y.R. Zheng: Statistical channel modeling of wireless shallow water acoustic communications from experiment data, Proc. MILCOM (2010) pp. 2412–2416

    Google Scholar 

  • A. Radosevic, T.M. Duman, J.G. Proakis, M. Stojanovic: Channel prediction for adaptive modulation in underwater acoustic communications, Proc. IEEE OCEANS'11 (2011) pp. 1–5

    Google Scholar 

  • F. Guerra, P. Casari, A. Berni, J. Potter, M. Zorzi: Performance evaluation of random and handshake-based channel access in collaborative mobile underwater networks, Proc. OCEANS'10 (2010) pp. 1–7

    Google Scholar 

  • M. Stojanovic: Optimization of a data link protocol for an underwater acoustic channel, Proc. IEEE OCEANS'05, Vol. 1 (2005) pp. 68–73

    Google Scholar 

  • L. Freitag, M. Grund, S. Singh, J. Partan, P. Koski, K. Ball: The WHOI micro-modem: An acoustic communications and navigation system for multiple platforms, Proc. MTS/IEEE OCEANS'05, Vol. 2 (2005) pp. 1086–1092

    Google Scholar 

  • A. Harris, M. Stojanovic, M. Zorzi: Idle-time energy savings through wake-up modes in underwater acoustic networks, Elsevier J. Ad Hoc Netw. 7, 770–777 (2009)

    Article  Google Scholar 

  • M.M. Stojanovic, J. Catipovic, J. Proakis: Adaptive multichannel combining and equalization for underwater acoustic communications, J. Acoust. Soc. Am. (1993) pp. 1621–1631

    Google Scholar 

  • M. Stojanovic, J.G. Proakis, J. Catipovic: Reduced complexity spatial and temporal processing of underwater acoustic communication signals, J. Acoust. Soc. Am. 98(2), 961–972 (1995)

    Article  Google Scholar 

  • M. Stojanovic, Z. Zvonar: Multichannel processing of broad-band multiuser communication signals in shallow water acoustic channels, IEEE-JOE 21(2), 156–166 (1996)

    Google Scholar 

  • M. Stojanovic, L. Freitag: Multichannel detection for wideband underwater acoustic CDMA communications, IEEE-JOE 31(3), 685–695 (2006)

    Google Scholar 

  • D.B. Kilfoyle, J.C. Preisig, A.B. Baggeroer: Spatial modulation experiments in the underwater acoustic channel, IEEE-JOE 30(2), 406–415 (2005)

    Google Scholar 

  • B. Li, J. Huang, S. Zhou, K. Ball, M. Stojanovic, L. Freitag, P. Willett: MIMO-OFDM for high-rate underwater acoustic communications, IEEE-JOE 34(4), 634–644 (2009)

    Google Scholar 

  • A. Radosevic, R. Ahmed, T.M. Duman, J.G. Proakis, M. Stojanovic: Adaptive OFDM modulation for underwater acoustic communications: Design considerations and experimental results, IEEE-JOE 39(2), 1–14 (2013)

    Google Scholar 

  • Y. Aval, M. Stojanovic: A method for differentially coherent multichannel processing of acoustic OFDM signals, Proc. IEEE Workshop Sensor Array Multichannel Signal Process. (SAM) (2012)

    Google Scholar 

  • G. Rojo, M. Stojanovic: Peak-to-average power ratio (PAR) reduction for acoustic OFDM systems, MTS J. 44(4), 30–41 (2010)

    Article  Google Scholar 

  • B. Li, S. Zhou, M. Stojanovic, L. Freitag, P. Willett: Multicarrier communication over underwater acoustic channels with nonuniform doppler shifts, IEEE-JOE 33(2), 198–209 (2008)

    Google Scholar 

  • P. Ceballos Carrascosa, M. Stojanovic: Adaptive channel estimation and data detection for underwater acoustic MIMO OFDM systems, IEEE-JOE 35(3), 635–646 (2010)

    Google Scholar 

  • A. Radosevic, T.M. Duman, J.G. Proakis, M. Stojanovic: Selective decision directed channel estimation for UWA OFDM systems, Proc. 49th Commun. Control Comput. (2011) pp. 647–653

    Google Scholar 

  • J. Huang, S. Zhou, J. Huang, C.R. Berger, P. Willett: Progressive inter-carrier interference equalization for OFDM transmission over time-varying underwater acoustic channels, IEEE J. Sel. Top. Signal Process. 5(8), 1524–1536 (2011)

    Article  Google Scholar 

  • K. Tu, D. Fertonani, T.M. Duman, M. Stojanovic, J.G. Proakis, P. Hursky: Mitigation of intercarrier interference for OFDM over time-varying underwater acoustic channels, IEEE-JOE 36(2), 156–171 (2011)

    Google Scholar 

  • S. Yerramalli, M. Stojanovic, U. Mitra: Partial FFT demodulation: A detection method for highly doppler distorted OFDM systems, IEEE Trans. Signal Process. 60(11), 5906–5918 (2012)

    Article  MathSciNet  Google Scholar 

  • Z. Wang, S. Zhou, G.B. Giannakis, C.R. Berger, J. Huang: Frequency-domain oversampling for zero-padded OFDM in underwater acoustic communications, IEEE-JOE 37(1), 14–24 (2012)

    Google Scholar 

  • Y.M. Aval, M. Stojanovic: Fractional FFT demodulation for differentially coherent detection of acoustic OFDM signals, Proc. 46th Conf. Signals Syst. Comput. (ASILOMAR) (2012) pp. 1525–1529

    Google Scholar 

  • S. Lin, D.J. Costello: Error Control Coding: Fundamentals and Applications (Prentice Hall, Englewood Cliffs 1983)

    MATH  Google Scholar 

  • B. Sklar: Digital Communications (Prentice Hall, Englewood Cliffs 1988)

    MATH  Google Scholar 

  • C. Berrou, A. Glavieux: Near optimum error correcting coding and decoding: turbo-codes, IEEE Trans. Commun. 44(10), 1261–1271 (1996)

    Article  Google Scholar 

  • M. Pajovic, P.-P. Beaujean: Turbo-coded frequency-hopped frequency division multiplexed signaling for underwater acoustic communications between 60 and 90 kHz in ports and very shallow waters, Proc. MTS/IEEE OCEANS'09 (2009) pp. 1–7

    Google Scholar 

  • J. Huang, S. Zhou, P. Willett: Nonbinary LDPC coding for multicarrier underwater acoustic communication, IEEE J. Sel. Areas Commun. 26(9), 1684–1696 (2008)

    Article  Google Scholar 

  • B. Tomasi, P. Casari, L. Badia, M. Zorzi: A study of incremental redundancy hybrid ARQ over Markov channel models derived from experimental data, Proc. WUWNet (2010)

    Google Scholar 

  • C. Laot, A. Glavieux, J. Labat: Turbo equalization: Adaptive equalization and channel decoding jointly optimized, IEEE J. Sel. Areas Commun. 19(9), 1744–1751 (2001)

    Article  Google Scholar 

  • J. Montana, M. Stojanovic, M. Zorzi: On joint frequency and power allocation in a cross-layer protocol for underwater acoustic networks, IEEE-JOE 35(4), 936–947 (2010)

    Google Scholar 

  • G.F. Edelmann, H.C. Song, S. Kim, W.S. Hodgkiss, W.A. Kuperman, T. Akal: Underwater acoustic communications using time reversal, IEEE-JOE 30(4), 852–864 (2005)

    Google Scholar 

  • J.R. Buck, J.C. Preisig, M. Johnson, J. Catipovic: Single-mode excitation in the shallow-water acoustic channel using feedback control, IEEE-JOE 22(2), 281–291 (1997)

    Google Scholar 

  • J.A. Flynn, J.A. Ritcey, D. Rouseff, W.L.J. Fox: Multichannel equalization by decision-directed passive phase conjugation: experimental results, IEEE-JOE 29(3), 824–836 (2004)

    Google Scholar 

  • S.E. Cho, H.C. Song, W.S. Hodgkiss: Successive interference cancellation for underwater acoustic communications, IEEE-JOE 36(4), 490–501 (2011)

    Google Scholar 

  • C. Petrioli, R. Petroccia, J. Shusta, L. Freitag: From underwater simulation to at-sea testing using the ns-2 network simulator, Proc. OCEANS'11 (2011) pp. 1–9

    Google Scholar 

  • J. Heideman, M. Stojanovic, M. Zorzi: Underwater sensor networks: Applications, advances, and challenges, Phil. Trans. R. Soc. 370, 157–175 (2012)

    Article  Google Scholar 

  • D. Pompili, I. Akyildiz: Overview of networking protocols for underwater wireless communications, Communications Magazine, IEEE 47(1), 97–102 (2009)

    Google Scholar 

  • J. Heidemann, W. Ye, J. Wills, A. Syed, Y. Li: Research challenges and applications for underwater sensor networking, Proc. IEEE WCNC, Vol. 1 (2006) pp. 228–235

    Google Scholar 

  • M. Chitre, S. Shahabodeen, M. Stojanovic: Underwater acoustic communications and networking: Recent advances and future challenges, Mar. Technol. Soc. J. 42(1), 103–116 (2008)

    Article  Google Scholar 

  • E.M. Sozer, M. Stojanovic, J.G. Proakis: Underwater acoustic networks, IEEE-JOE 25(1), 72–83 (2000)

    Google Scholar 

  • R. Eustice, H. Singh, L. Whitcomb: Synchronous-clock one-way-travel-time acoustic navigation for underwater vehicles, J. Field Robotics 28, 121–136 (2011)

    Article  Google Scholar 

  • M. Stojanovic: Design and capacity analysis of cellular-type underwater acoustic networks, IEEE-JOE 33(2), 171–181 (2008)

    Google Scholar 

  • B. Peleato, M. Stojanovic: Distance aware collision avoidance protocol for ad-hoc underwater acoustic sensor networks, IEEE Commun. Lett. 11(12), 1025–1027 (2007)

    Article  Google Scholar 

  • A. Syed, W. Ye, J. Heidemann: Comparison and evaluation of the T-Lohi MAC for underwater acoustic sensor networks, IEEE J. Sel. Areas Commun. 26(9), 1731–1743 (2008)

    Article  Google Scholar 

  • J. Ahn, A. Syed, B. Krishnamachari, J. Heidemann: Design and analysis of a propagation delay tolerant ALOHA protocol for underwater networks, Ad Hoc Netw. J. 9(1), 752–766 (2011)

    Article  Google Scholar 

  • N. Chirdchoo, W.-S. Soh, K. Chua: RIPT: A receiver-initiated reservation-based protocol for underwater acoustic networks, IEEE J. Sel. Areas Commun. 26(9), 1744–1753 (2008)

    Article  Google Scholar 

  • M.K. Park, V. Rodoplu: UWAN-MAC: An energy-efficient MAC protocol for underwater acoustic wireless sensor networks, IEEE-JOE 32(3), 710–720 (2007)

    Google Scholar 

  • M. Zorzi, P. Casari, N. Baldo, A. Harris: Energy-efficient routing schemes for underwater acoustic networks, IEEE J. Sel. Areas Commun. 26(9), 1754–1766 (2008)

    Article  Google Scholar 

  • D. Pompili, T. Melodia, I.F. Akyildiz: Distributed routing algorithms for underwater acoustic sensor networks, IEEE Trans. Wirel. Commun. 9(9), 2934–2944 (2010)

    Article  Google Scholar 

  • A. Patil, M. Stojanovic: A node discovery protocol for ad hoc underwater acoustic networks, Wirel. Commun. Mob. Comput. 13(3), 277–295 (2013)

    Article  Google Scholar 

  • F. Zorzi, M. Stojanovic, M. Zorzi: On the effects of node density and duty cycle on energy efficiency in underwater networks, Proc. IEEE OCEANS'10 (2010) pp. 1–6

    Google Scholar 

  • S. Basagni, C. Petrioli, R. Petroccia, M. Stojanovic: Optimized packet size selection in underwater WSN communications, IEEE-JOE 37(3), 321–337 (2012)

    Google Scholar 

  • D.E. Lucani, M. Stojanovic, M. Medard: Random linear network coding for time division duplexing: When to stop talking and start listening, Proc. IEEE INFOCOM (2009) pp. 1800–1808

    Google Scholar 

  • M.S. Rahim, P. Casari, F. Guerra, M. Zorzi: On the performance of delay tolerant routing protocols in underwater networks, Proc. IEEE OCEANS'11 (2011) pp. 1–7

    Google Scholar 

  • L.F.M. Vieira, U. Lee, M. Gerla: Phero-trail: a bio-inspired location service for mobile underwater sensor networks, IEEE J. Sel. Areas Commun. 28(4), 553–563 (2010)

    Article  Google Scholar 

  • N. Chirdchoo, W.-S. Soh, K.C. Chua: Sector-based routing with destination location prediction for underwater mobile networks, Proc. WAINA (2009) pp. 1148–1153

    Google Scholar 

  • E.A. Carlson, P.-P. Beaujean, E. An: Location-aware routing protocol for underwater acoustic networks, Proc. IEEE OCEANS'06 (2006) pp. 1–6

    Google Scholar 

  • B. Chen, D. Pompili: QUO VADIS: QoS-aware underwater optimization framework for inter-vehicle communication using acoustic directional transducers, Proc. IEEE SECON (2011) pp. 341–349

    Google Scholar 

  • D. Green: Acoustic modems, navigation aids, and networks for undersea operations, Proc. IEEE OCEANS'10 (2010) pp. 1–6

    Google Scholar 

  • M. Stojanovic, L. Freitag, J. Leonard, P. Newman: A network protocol for multiple AUV localization, Proc. MTS/IEEE OCEANS'02, Vol. 1 (2002) pp. 604–611

    Chapter  Google Scholar 

  • N.E. Farr, A.D. Bowen, J.D. Ware, C. Pontbriand, M.A. Tivey: An integrated, underwater optical /acoustic communications system, Proc. IEEE OCEANS'10 (2010) pp. 1–6

    Google Scholar 

  • M. Stojanovic, J. Preisig: Underwater acoustic communication channels: Propagation models and statistical characterization, IEEE Commun. Mag. 47(1), 84–89 (2009)

    Article  Google Scholar 

  • E.A. Carlson, P.P.J. Beaujean, E. An: Location-aware source routing (LASR) protocol for underwater acoustic networks of AUVs, J. Electr. Comput. Eng. 2012, 1–18 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milica Stojanovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stojanovic, M., Beaujean, PP.J. (2016). Acoustic Communication. In: Dhanak, M.R., Xiros, N.I. (eds) Springer Handbook of Ocean Engineering. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-16649-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16649-0_15

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16648-3

  • Online ISBN: 978-3-319-16649-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics