Skip to main content

Part of the book series: Universitext ((UTX))

  • 2672 Accesses

Abstract

Our attention turns now to the study of the fundamental question: How does one use input variables in the actual control of a system? Naturally, the use of control functions depends on the desired objectives of performance. Moreover, there are various ways in which the control can be applied. One way is to determine, a priori, a control sequence in the discrete-time case, or a control function in the continuous-time case, and apply it. Thus the control is applied without regard to its lasting effects or to the actual system performance, except insofar as the design goals have been taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • H. Aling and J.M. Schumacher, “A nine-fold canonical decomposition for linear systems”, Int. J. Control, vol. 39(4), (1984), 779–805.

    Google Scholar 

  • G. Basile and G. Marro, Controlled and Conditioned Invariants in Linear System Theory, Prentice Hall, Englewood Cliffs, NJ, 1992.

    MATH  Google Scholar 

  • V. D. Blondel, Simultaneous Stabilization of Linear Systems, Lecture Notes in Control and Inf. Sciences, Springer, Heidelberg, 1994.

    Book  Google Scholar 

  • R.W. Brockett, “The geometry of the set of controllable linear systems”, Research Reports of Autom. Control Lab., Faculty of Engineering, Nagoya University, vol. 24, (1977), 1–7.

    Google Scholar 

  • R.W. Brockett and C.I. Byrnes, “Multivariable Nyquist criteria, root loci and pole placement: A geometric approach”, IEEE Trans. Autom. Control, vol. 26, (1981), 271–284.

    Article  MATH  MathSciNet  Google Scholar 

  • P. Brunovsky, “A classification of linear controllable systems”, Kybernetika, vol. 6.3, (1970), 173–188.

    Google Scholar 

  • C.I. Byrnes, “Pole assignment by output feedback”, Three Decades of Mathematical Systems Theory, H. Nijmeijer and J.M. Schumacher, Eds., Springer, Heidelberg, 31–87, 1989.

    Google Scholar 

  • E. Emre and M.I.J. Hautus, “A polynomial characterization of (A, B)-invariant and reachability subspaces”, SIAM J. Control Optim., vol. 18, (1980), 420–436.

    Google Scholar 

  • P.L. Falb and W.A. Wolovich, “Decoupling in the design and synthesis of multivariable control systems”, IEEE Trans. Autom. Control, vol. 12(6), (1967), 651–659.

    Google Scholar 

  • B.A. Francis, “The linear multivariable regulator problem”, SIAM J. Control Optim., vol. 15(3), (1977), 486–505.

    Google Scholar 

  • B.A. Francis and W.M. Wonham, “The internal model principle of control theory.”, Automatica, vol. 12.5, (1976), 457–465.

    Google Scholar 

  • P.A. Fuhrmann, “Linear feedback via polynomial models”, Int. J. Control 30, (1979), 363–377.

    Article  MATH  MathSciNet  Google Scholar 

  • P.A. Fuhrmann, “Duality in polynomial models with some applications to geometric control theory”, IEEE Trans. Autom. Control, 26, (1981), 284–295.

    Article  MATH  MathSciNet  Google Scholar 

  • P.A. Fuhrmann and J. C. Willems, “Factorization indices at infinity for rational matrix functions”, Integral Equations and Operator Theory, vol. 2/3, (1979), 287–300.

    Google Scholar 

  • P.A. Fuhrmann and J.C. Willems, “A study of (A,B)-invariant subspaces via polynomial models”, Int. J. Control, vol. 31, (1980), 467–494.

    Google Scholar 

  • B.K. Ghosh and C.I. Byrnes, “Simultaneous stabilization and pole-placement by nonswitching dynamic compensation”, IEEE Trans. Autom. Control, vol. 28, (1983), 735–741.

    Article  MathSciNet  Google Scholar 

  • I.C. Gohberg, L. Lerer and L. Rodman, “Factorization indices for matrix polynomials”, Bull. Am. Math. Soc., vol. 84, (1978), 275–277.

    Article  MATH  MathSciNet  Google Scholar 

  • E. Gorla and J. Rosenthal, “Pole placement with fields of positive characteristic”, Three Decades of Progress in Control Sciences; X. Hu, U. Jonsson, B. Wahlberg and B. Ghosh, Eds., Springer, 215–231, 2010.

    Google Scholar 

  • M.L.J. Hautus, “(A, B)-invariant and stabilizability subspaces, a frequency domain description”, Automatica, vol. 16, (1980), 703–707.

    Google Scholar 

  • M.L.J. Hautus and M. Heymann, “Linear feedback—an algebraic approach”, SIAM J. Control Optim., vol. 16, (1978), 83–105.

    Article  MATH  MathSciNet  Google Scholar 

  • M. Hazewinkel and C.F. Martin, “Representations of the symmetric group, the specialization order, systems and Grassmann manifolds”, L’Enseignement Mathematique, vol. 29, (1983), 53–87.

    MATH  MathSciNet  Google Scholar 

  • U. Helmke, “The topology of a moduli space for linear dynamical systems”, Comment. Math. Helv., vol. 60, (1985), 630–655.

    Article  MATH  MathSciNet  Google Scholar 

  • M. Heymann, Structure and realization problems in the theory of dynamical systems, CISM Courses and Lectures, vol. 204, Springer, 1975.

    Google Scholar 

  • P.P. Khargonekar and E. Emre, “Further results on polynomial characterizations of (F, G)-invariant and reachability subspaces”, IEEE Trans. Autom. Control, vol. 27 (10), (1982), 352–366.

    Google Scholar 

  • V. Kucera, “A method to teach the parametrization of all stabilizing controllers”, Proc. 18th IFAC World Congress, Milano, (2011), 6355–6360.

    Google Scholar 

  • S. Lang, Algebra, Addison-Wesley, Reading, MA, 1965.

    MATH  Google Scholar 

  • A.S. Morse, “Structural invariants of multivariable linear systems”, SIAM J. Control Optim., vol. 11, (1973), 446–465.

    Article  MATH  MathSciNet  Google Scholar 

  • A.S. Morse and W.M. Wonham, “Status of noninteracting control.” IEEE Trans. Autom. Control, vol. 16(6), (1971): 568–581.

    Google Scholar 

  • H. F. Münzner and D. Prätzel-Wolters, “Minimal bases of polynomial modules, structural indices and Brunovsky transformations”, Int. J. Control, vol. 30, (1979), 291–318.

    Article  MATH  Google Scholar 

  • A.B. Özgüler, Linear Multichannel Control, Prentice Hall, 1994.

    Google Scholar 

  • V.M. Popov, “Invariant description of linear time-invariant controllable systems”, SIAM J. Control Optim., vol. 10, (1972), 252–264.

    Article  MATH  Google Scholar 

  • H.H. Rosenbrock, State-Space and Multivariable Theory, Wiley, New York, 1970.

    MATH  Google Scholar 

  • A. Tannenbaum, Invariance and System Theory: Algebraic and Geometric Aspects, Lecture Notes in Mathematics 845, Springer, Berlin, 1981.

    Google Scholar 

  • M. Vidyasagar, Control Systems Synthesis – A Factorization Approach, MIT Press, Cambridge, MA, second printing, 1987.

    Google Scholar 

  • S.H. Wang and E.J. Davison, “Canonical forms of linear multivariable systems”, SIAM J. Control Optim., vol. 14, (1976), 236–250.

    Article  MATH  MathSciNet  Google Scholar 

  • X. Wang, “Pole placement by static output feedback”, J. Math. Systems, Estimation, and Control, vol. 2, (1992), 205–218.

    Google Scholar 

  • J.C. Willems and C. Commault, “Disturbance decoupling by measurement feedback with stability or pole placement”, SIAM J. Matrix Anal. Appl., vol. 19, (1981), 490–504.

    MATH  MathSciNet  Google Scholar 

  • H. Wimmer, “Existenzsätze in der Theorie der Matrizen und Lineare Kontrolltheorie”, Monatsh. Math., vol. 78, (1974), 256–263.

    Article  MATH  MathSciNet  Google Scholar 

  • W.M. Wonham, Linear Multivariable Control: A Geometric Approach, Springer, 1979.

    Google Scholar 

  • B.F. Wyman, M.K. Sain, G. Conte and A.M. Perdon, “On the zeros and poles of a transfer function”, Linear Algebra Appl., vol. 122–124, (1989), 123–144.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fuhrmann, P.A., Helmke, U. (2015). State Feedback and Output Injection. In: The Mathematics of Networks of Linear Systems. Universitext. Springer, Cham. https://doi.org/10.1007/978-3-319-16646-9_6

Download citation

Publish with us

Policies and ethics