Skip to main content

Constructive Determination of the Spectral Invariants

  • Chapter
  • First Online:
Book cover Multidimensional Periodic Schrödinger Operator

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 263))

Abstract

This chapter describes the constructive determination of the spectral invariants explicitly expressed with respect to the Fourier coefficients of the potential by using the Bloch eigenvalues as input data. At the same time, it gives a rich set of invariants that is enough to determine the potential \(q\). This chapter consists of five sections. First section is the introduction and preliminary facts where we discuss the related papers, describe briefly the scheme of this chapter and recall the results of Chap. 2 which are used essentially in this chapter. In Sect. 3.2, we develop the asymptotic formulas obtained in Chap. 2 and write the first and second term of the asymptotic formulas for the the Bloch eigenvalues in the explicit form. In Sect. 3.3, we investigate the derivatives of the band functions \(\Lambda _{n}\) with respect to the quasimomentum. In Sect. 3.4, using the results of the previous sections, we determine constructively a family of spectral invariants of this operator from the given Bloch eigenvalues. Some of these invariants generalize the well-known invariants and others are entirely new. The new invariants are explicitly expressed by Fourier coefficients of the potential which present the possibility of determining the potential constructively by using the Bloch eigenvalues as input data in the next chapter. Final section of this chapter is the Appendix, where we give some estimations and calculations of previous sections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eskin, G., Ralston, J., Trubowitz, E.: On isospectral periodic potential in \(\mathbb{R}^{n}\). Commun. Pure Appl. Math. 37, 647 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  2. Feldman, J., Knorrer, H., Trubowitz, E.: The perturbatively unstable spectrum of the periodic Schrödinger operator. Comment. Math. Helvetica 66, 557–579 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  3. Veliev, O.A.: On the constructively determination of spectral invariants of the periodic Schrödinger operator with smooth potentials. J. Phys. A Math. Theor. 41(36), 365206 (2008)

    Article  MathSciNet  Google Scholar 

  4. Marchenko, V.A.: Sturm-Liouville Operators and Applications. Birkhauser, Basel (1986)

    MATH  Google Scholar 

  5. Eastham, M.S.P.: The Spectral Theory of Periodic Differential Equations. Scotting Academic Press, Edinburgh (1973)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oktay Veliev .

Appendices

Appendices

3.1.1 Appendix 1: The Proof of (3.2.28)

Here we estimate the conjugate \(\overline{C_{1}(j^{{\prime }},\lambda _{j,\beta })}\) of \(C_{1}(j^{{\prime }},\lambda _{j,\beta }),\) namely we prove that

$$\begin{aligned} \sum _{(j_{1},\beta _{1})\in Q(\rho ^{\alpha },9r)}\dfrac{\overline{ A(j^{{\prime }},\beta ,j^{{\prime }}+j_{1},\beta +\beta _{1}})\overline{ A(j^{{\prime }}+j_{1},\beta +\beta _{1},j,\beta })}{\lambda _{j,\beta }-\lambda _{j^{{\prime }}+j_{1},\beta +\beta _{1}}}=O(\rho ^{-2a}r^{2}), \end{aligned}$$
(3.5.1)

[see (3.2.26)], where

$$\begin{aligned} Q(\rho ^{\alpha },9r)=\{(j_{1},\beta _{1}):\vert j_{1}\delta \vert <9r,0<\vert \beta _{1}\vert <\rho ^{\alpha }\},j\in S_{1}(\rho ),\vert j^{{\prime }}\delta \vert <r,r=O(\rho ^{\frac{1}{2}\alpha _{2}}). \end{aligned}$$

The conditions on indices \(j^{{\prime }}\), \(j_{1},\) \(j\) and (3.2.20) imply that

$$\begin{aligned} \mu _{j^{{\prime }}+j_{1}}=O(r^{2}),\mu _{j}=O(r^{2}). \end{aligned}$$

These with \(\beta \notin V_{\beta _{1}}^{\delta }(\rho ^{a})))\), where \( \beta _{1}\in \Gamma _{\delta }(p\rho ^{\alpha }),\) [see (3.2.9)] give

$$\begin{aligned} \lambda _{j,\beta }-\lambda _{j^{{\prime }}+j_{1},\beta +\beta _{1}}=-2\langle \beta ,\beta _{1}\rangle +O(r^{2}),\vert \langle \beta ,\beta _{1}\rangle \vert >\frac{1}{3}\rho ^{a}. \end{aligned}$$
(3.5.2)

Using this, (3.2.15) and (3.5.1), we get

$$\begin{aligned} \overline{C_{1}(j^{{\prime }},\lambda _{j,\beta })}=\sum _{\beta _{1}}\dfrac{ C^{{\prime }}}{-2\langle \beta ,\beta _{1}\rangle }+O(\rho ^{-2a}r^{2}), \end{aligned}$$
(3.5.3)

where

$$\begin{aligned} C^{{\prime }}=\sum _{j_{1}}\overline{A(j^{{\prime }},\beta ,j^{{\prime }}+j_{1},\beta +\beta _{1}})\overline{A(j^{{\prime }}+j_{1},\beta +\beta _{1},j,\beta }). \end{aligned}$$

In Chap. 2, we proved that [see (2.3.7), (2.3.21), Lemma 2.3.3]

$$\begin{aligned}&\overline{A(j^{{\prime }},\beta ,j^{{\prime }}+j_{1},\beta +\beta _{1}}) =\sum \limits _{n_{1}:(n_{1},\beta _{1})\in \Gamma ^{{\prime }}(\rho ^{\alpha })}c(n_{1},\beta _{1})a(n_{1},\beta _{1},j^{{\prime }},\beta ,j^{{\prime }}+j_{1},\beta +\beta _{1}), \nonumber \\&\quad \overline{A(j^{{\prime }}+j_{1},\beta +\beta _{1},j,\beta }) =\sum \limits _{n_{2}:(n_{2},-\beta _{1})\in \Gamma ^{{\prime }}(\rho ^{\alpha })}c(n_{2},-\beta _{1})a(n_{2},-\beta _{1},j^{{\prime }}+j_{1},\beta +\beta _{1},j,\beta ),\nonumber \\&\quad \Gamma ^{{\prime }}(\rho ^{\alpha })=\{(n_{1},\beta _{1}):\beta _{1}\in \Gamma _{\delta }\backslash 0,n_{1}\in \mathbb {Z},\beta _{1}+(n_{1}-(2\pi )^{-1}\langle \beta _{1},\delta ^{*}\rangle )\delta \in \Gamma (\rho ^{\alpha })\}, \end{aligned}$$
(3.5.4)
$$\begin{aligned}&c(n_{1},\beta _{1})=q_{\gamma _{1}},\gamma _{1}=\beta _{1}+(n_{1}-(2\pi )^{-1}\langle \beta _{1},\delta ^{*}\rangle )\delta \in \Gamma (\rho ^{\alpha }), \nonumber \\&\quad a(n_{1},\beta _{1},j^{{\prime }},\beta ,j^{{\prime }}+j_{1},\beta +\beta _{1})=(e^{i(n_{1}-(2\pi )^{-1}\langle \beta _{1},\delta ^{*}\rangle )\zeta }\varphi _{j^{{\prime }},v(\beta )}(\zeta ),\varphi _{j^{{\prime }}+j_{1},v(\beta +\beta _{1})}(\zeta )), \end{aligned}$$
(3.5.5)
$$\begin{aligned} a(n_{2},-\beta _{1},j^{{\prime }}&+j_{1},\beta +\beta _{1},j,\beta )=(e^{i(n_{2}-(2\pi )^{-1}\langle -\beta _{1},\delta ^{*}\rangle )\zeta }\varphi _{j^{{\prime }}+j_{1},v(\beta +\beta _{1})}(\zeta ),\varphi _{j,v(\beta )}(\zeta ))\nonumber \\&\quad =(\varphi _{j^{{\prime }}+j_{1},v(\beta +\beta _{1})}(\zeta ),e^{-i(n_{2}-(2\pi )^{-1}\langle -\beta _{1},\delta ^{*}\rangle )\zeta }\varphi _{j,v(\beta )}(\zeta )) \nonumber \\&\quad =\overline{(e^{-i(n_{2}-(2\pi )^{-1}\langle -\beta _{1},\delta ^{*}\rangle \zeta }\varphi _{j,v(\beta )}(\zeta ),\varphi _{j^{{\prime }}+j_{1},v(\beta +\beta _{1})}(\zeta ))}, \end{aligned}$$
(3.5.6)

where \(\delta ^{*}\) is the element of \(\Omega \) satisfying \(\langle \delta ^{*},\delta \rangle =2\pi .\)

Now, to estimate the right-hand side of (3.5.3) we prove that

$$\begin{aligned}&\sum _{j_{1}}a(n_{1},\beta _{1},j^{{\prime }},\beta ,j^{{\prime }}+j_{1},\beta +\beta _{1})a(n_{2},-\beta _{1},j^{{\prime }}+j_{1},\beta +\beta _{1},j,\beta ) \\&=a(n_{1}+n_{2},0,j^{{\prime }},\beta ,j,\beta )+O(\rho ^{-p\alpha }). \nonumber \end{aligned}$$
(3.5.7)

By definition, we have

$$\begin{aligned}&a(n_{1}+n_{2},0,j^{{\prime }},\beta ,j,\beta )=(e^{i(n_{1}+n_{2})\zeta }\varphi _{j^{{\prime }},v(\beta )}(\zeta ),\varphi _{j,v(\beta )}(\zeta ))\nonumber \\&\quad = (e^{i(n_{1}-(2\pi )^{-1}\langle \beta _{1},\delta ^{*}\rangle )\zeta }\varphi _{j^{{\prime }},v(\beta )}(\zeta ),e^{-i(n_{2}-(2\pi )^{-1}\langle -\beta _{1},\delta ^{*}\rangle )\zeta }\varphi _{j,v(\beta )}(\zeta )). \end{aligned}$$

This, (3.5.6), and the following formulas

$$\begin{aligned}&e^{i(n_{1}-(2\pi )^{-1}\langle \beta _{1},\delta ^{*}\rangle )\zeta }\varphi _{j^{{\prime }},v(\beta )}(\zeta ) \nonumber \\&\qquad \qquad =\sum _{\vert j_{1}\delta \vert <9r}a(n_{1},\beta _{1},j^{{\prime }},\beta ,j^{{\prime }}+j_{1},\beta +\beta _{1})\varphi _{j^{{\prime }}+j_{1},v(\beta +\beta _{1})}(\zeta )+O(\rho ^{-p\alpha }), \nonumber \\&e^{-i(n_{2}-(2\pi )^{-1}\langle -\beta _{1},\delta ^{*}\rangle )\zeta }\varphi _{j,v(\beta )}(\zeta ) \nonumber \\&\qquad \qquad =\sum _{\vert j_{1}\delta \vert <9r}\overline{a(n_{2},-\beta _{1},j^{{\prime }},\beta ,j^{{\prime }}+j_{1},\beta +\beta _{1})}\varphi _{j^{{\prime }}+j_{1},v(\beta +\beta _{1})}+O(\rho ^{-p\alpha }),\nonumber \\&\quad \sum \limits _{j_{_{1}}}\vert a(n_{1},\beta _{1},j^{{\prime }},\beta ,j^{{\prime }}+j_{1},\beta +\beta _{1})\vert =O(1) \end{aligned}$$
(3.5.8)

[see (2.3.16), (2.3.17) of Chap. 2) give the proof of (3.5.7). Now from (3.5.7), (3.5.4) and (3.5.3) we obtain

$$\begin{aligned}&C^{{\prime }}=\sum \limits _{n_{1}}\sum \limits _{n_{2}}(c(n_{1},\beta _{1})c(n_{2},-\beta _{1})a(n_{1}+n_{2},0,j^{{\prime }},\beta ,j,\beta )+O(\rho ^{-p\alpha })),\nonumber \\&\quad \overline{C_{1}(j^{{\prime }},\lambda _{j,\beta })}=\sum _{\beta _{1}}\text { }\sum \limits _{n_{1}}\sum \limits _{n_{2}}C_{1}^{{\prime }}(\beta _{1},n_{1},n_{2})+O(\rho ^{-2a}r^{2}), \end{aligned}$$

where

$$\begin{aligned} C_{1}^{{\prime }}(\beta _{1},n_{1},n_{2})=\dfrac{c(n_{1},\beta _{1})c(n_{2},-\beta _{1})a(n_{1}+n_{2},0,j^{{\prime }},\beta ,j,\beta )}{ -2\langle \beta ,\beta _{1}\rangle }. \end{aligned}$$

It is clear that

$$\begin{aligned} C_{1}^{{\prime }}(\beta _{1},n_{1},n_{2})+C_{1}^{{\prime }}(-\beta _{1},n_{2},n_{1})=0. \end{aligned}$$
(3.5.9)

Therefore

$$\begin{aligned} \overline{C_{1}(j^{{\prime }},\lambda _{j,\beta })}=O(\rho ^{-2a}r^{2}). \end{aligned}$$

3.1.2 Appendix 2: The Proof of (3.2.35)

Arguing as in the proof of (3.2.27), we see that

$$\begin{aligned} C_{2}(\Lambda _{j,\beta })=C_{2}(\lambda _{j,\beta })+O(\rho ^{-3a}) \end{aligned}$$

and by (3.5.4)

$$\begin{aligned} \overline{C_{2}(\lambda _{j,\beta })}&=\sum _{\beta _{1},\beta _{2}}(\sum \limits _{n_{1},n_{2},n_{3}}(\sum _{j_{1},j_{2}}\dfrac{c(n_{1},\beta _{1})c(n_{2},\beta _{2})c(n_{3},-\beta _{1}-\beta _{2})}{(\lambda _{j,\beta }-\lambda _{j(1),\beta (1)})(\lambda _{j,\beta }-\lambda _{j(2),\beta (2)})}a(n_{1},\beta _{1},j,\beta ,j(1),\beta (1)) \\&\times a(n_{2},\beta _{2},j(1),\beta (1),j(2),\beta (2))a(n_{3},-\beta _{1}-\beta _{2},j(2),\beta (2),j,\beta ), \end{aligned}$$

where

$$\begin{aligned} (j_{1},\beta _{1})\in Q(\rho ^{\alpha },9r_{1}),(j_{2},\beta _{2})\in Q(\rho ^{\alpha },90r_{1}),j\in S_{1},\beta _{1}+\beta _{2}\ne 0. \end{aligned}$$

Applying (3.5.7) two times and using (3.5.8), we get

$$\begin{aligned}&\sum _{j_{1}}a(n_{1},\beta _{1},j,\beta ,j(1),\beta (1))(\sum _{j_{2}}a(n_{2}, \beta _{2},j(1),\beta (1),j(2),\beta (2))a(n_{3},-\beta _{1}- \beta _{2},j(2),\beta (2),j,\beta ))\nonumber \\&\quad =\sum _{j_{1}}a(n_{1},\beta _{1},j,\beta ,j(1),\beta (1))(a(n_{2}+n_{3},- \beta _{1},j(1),\beta (1),j,\beta )+O(\rho ^{-p\alpha }))\nonumber \\&\quad =a(n_{1}+n_{2}+n_{3},0,j,\beta ,j,\beta )+O(\rho ^{-p\alpha }). \end{aligned}$$

Using this in the above expression for \(C_{2}(\lambda _{j,\beta })\) and taking into account that

$$\begin{aligned} \lambda _{j,\beta }-\lambda _{j(1),\beta (1)}&=-2\langle \beta ,\beta _{1}\rangle +O(\rho ^{2\alpha _{1}}),\vert \langle \beta ,\beta _{1}\rangle \vert >\frac{1}{3}\rho ^{a}, \\ \lambda _{j,\beta }-\lambda _{j(2)\beta (2)}&=-2\langle \beta ,\beta _{1}+\beta _{2}\rangle +O(\rho ^{2\alpha _{1}}),\vert \langle \beta ,\beta _{1}+\beta _{2}\rangle \vert >\frac{1}{3}\rho ^{a}, \end{aligned}$$

which can be proved as (3.5.2), we have

$$\begin{aligned}&C_{2}(\lambda _{j,\beta })=O(\rho ^{-3a+2\alpha _{1}})\nonumber \\&\quad +\sum _{\beta _{1},\beta _{2}}\sum \limits _{n_{1},n_{2},n_{3}}\frac{ c(n_{1},\beta _{1})c(n_{2},\beta _{2})c(n_{3},-\beta _{1}-\beta _{2})a(n_{1}+n_{2}+n_{3},0,j,\beta ,j,\beta )}{4\langle \beta ,\beta _{1}\rangle \langle \beta ,\beta _{1}+\beta _{2}\rangle }. \end{aligned}$$

Grouping the terms with the equal multiplicands

$$\begin{aligned}&c(n_{1},\beta _{1})c(n_{2},\beta _{2})c(n_{3},-\beta _{1}-\beta _{2}), c(n_{2},\beta _{2})c(n_{1},\beta _{1})c(n_{3},-\beta _{1}-\beta _{2}), \\&c(n_{1},\beta _{1})c(n_{3},-\beta _{1}-\beta _{2})c(n_{2},\beta _{2}), c(n_{2},\beta _{2})c(n_{3},-\beta _{1}-\beta _{2})c(n_{1},\beta _{1}), \\&c(n_{3},-\beta _{1}-\beta _{2})c(n_{1},\beta _{1})c(n_{2},\beta _{2}), c(n_{3},-\beta _{1}-\beta _{2})c(n_{2},\beta _{2})c(n_{1},\beta _{1}) \end{aligned}$$

and using the obvious equality

$$\begin{aligned}&\frac{1}{\langle \beta ,\beta _{1}\rangle \langle \beta ,\beta _{1}+\beta _{2}\rangle }+\frac{1}{\langle \beta ,\beta _{2}\rangle \langle \beta ,\beta _{2}+\beta _{1}\rangle }+\frac{1}{\langle \beta ,\beta _{1}\rangle \langle \beta ,-\beta _{2}\rangle }\nonumber \\&\quad + \frac{1}{\langle \beta ,\beta _{2}\rangle \langle \beta -,\beta _{1}\rangle } +\frac{1}{\langle \beta ,-\beta _{1}-\beta _{2}\rangle \langle \beta ,-\beta _{2}\rangle }+\frac{1}{\langle \beta ,-\beta _{1}-\beta _{2}\rangle \langle \beta ,-\beta _{1}\rangle }=0, \end{aligned}$$

we see that

$$\begin{aligned} C_{2}(\lambda _{j,\beta })=O(\rho ^{-3a+2\alpha _{1}}). \end{aligned}$$

3.1.3 Appendix 3: The Proof of (3.2.34)

By (3.2.27) we have

$$\begin{aligned} C_{1}(\Lambda _{j,\beta })=C_{1}(\lambda _{j,\beta })+O(\rho ^{-3a}). \end{aligned}$$

Therefore, we need to prove that

$$\begin{aligned} \overline{C_{1}(\lambda _{j,\beta })}=\frac{1}{4}\int _{F}\left| f_{\delta ,\beta +\tau }(x)\right| ^{2}\left| \varphi _{j,v}^{\delta }(\langle \delta ,x\rangle )\right| ^{2}dx+O(\rho ^{-3a+2\alpha _{1}}), \end{aligned}$$

where

$$\begin{aligned}&\overline{C_{1}(\lambda _{j,\beta })}\equiv \sum _{\beta _{1}} \sum _{j_{1}}\dfrac{\overline{A(j,\beta ,j+j_{1},\beta +\beta _{1}})\overline{ A(j+j_{1},\beta +\beta _{1},j,\beta })}{\lambda _{j,\beta }-\lambda _{j+j_{1},\beta +\beta _{1}}},\nonumber \\&\quad (j_{1},\beta _{1})\in Q(\rho ^{\alpha },9r_{1}),j\in S_{1}, \end{aligned}$$

and by (3.5.4)

$$\begin{aligned}&\overline{C_{1}(\lambda _{j,\beta })}=\sum _{\beta _{1}} \sum \limits _{n_{1}:(n_{1},\beta _{1})\in \Gamma ^{{\prime }}(\rho ^{\alpha })}\sum \limits _{n_{2}:(n_{2},-\beta _{1})\in \Gamma ^{{\prime }}(\rho ^{\alpha })}\sum _{j_{1}}\frac{c(n_{1},\beta _{1})c(n_{2},-\beta _{1})}{\lambda _{j,\beta }-\lambda _{j+j_{1},\beta +\beta _{1}}}\nonumber \\&\qquad \qquad \qquad \times a(n_{1},\beta _{1},j,\beta ,j+j_{1},\beta +\beta _{1})a(n_{2},-\beta _{1},j+j_{1},\beta +\beta _{1},j,\beta ). \end{aligned}$$

Replacing \(\lambda _{j,\beta }-\lambda _{j+j_{1},\beta +\beta _{1}}\) by

$$\begin{aligned} -(2\langle \beta +\tau ,\beta _{1}\rangle +\vert \beta _{1}\vert ^{2}+\mu _{j+j_{1}}(v(\beta +\beta _{1}))-\mu _{j}(v(\beta ))) \end{aligned}$$

and using (3.5.7) for \(j^{{\prime }}=j,\) we have

$$\begin{aligned}&\overline{C_{1}(j,\lambda _{j,\beta })}=\sum _{\beta _{1}} \sum \limits _{n_{1}}\sum \limits _{n_{2}}\frac{c(n_{1},\beta _{1})c(n_{2},-\beta _{1})a(n_{1}+n_{2},0,j,\beta ,j,\beta )}{-2\langle \beta +\tau ,\beta _{1}\rangle }\nonumber \\&\quad + \sum _{\beta _{1}}\sum \limits _{n_{1}}\sum \limits _{n_{2}}\text { }\sum _{j_{1}}\frac{c(n_{1},\beta _{1})c(n_{2},-\beta _{1})a(n_{1},\beta _{1},j,\beta ,j+j_{1},\beta +\beta _{1})}{2\langle \beta +\tau ,\beta _{1}\rangle (2\langle \beta +\tau ,\beta _{1}\rangle +\vert \beta _{1}\vert ^{2}+\mu _{j+j_{1}}-\mu _{j})}\nonumber \\&\quad \times a(n_{2},-\beta _{1},j+j_{1},\beta +\beta _{1},j,\beta )(\vert \beta _{1}\vert ^{2}+\mu _{j+j_{1}}(v(\beta +\beta _{1}))-\mu _{j}(v(\beta ))). \end{aligned}$$

The formula (3.5.9) shows that the first summation of the right-hand side of this equality is zero. Thus we need to estimate the second sum. For this we use the following relation

$$\begin{aligned}&\mu _{j+j_{1}}(v(\beta +\beta _{1}))a(n_{1},\beta _{1},j,\beta ,j+j_{1},\beta +\beta _{1})=(e^{i(n_{1}-\frac{\langle \beta _{1},\delta ^{*}\rangle }{2\pi })\zeta }\varphi _{j,v(\beta )}(\zeta ),T_{v}\varphi _{j+j_{1},v(\beta +\beta _{1})}(\zeta ))\nonumber \\&\quad =(T_{v}(e^{i(n_{1}-(2\pi )^{-1}(\beta _{1},\delta ^{*}\rangle )\zeta }\varphi _{j,v(\beta )}(\zeta )),\varphi _{j+j_{1},v(\beta +\beta _{1})}(\zeta )\nonumber \\&\quad =(\vert n_{1}-(2\pi )^{-1}\langle \beta _{1},\delta ^{*}\rangle \vert ^{2}\vert \delta \vert ^{2}+\mu _{j}(v))(e^{i(n_{1}-(2\pi )^{-1}\langle \beta _{1},\delta ^{*}\rangle )\zeta }\varphi _{j,v(\beta )}(\zeta ),\varphi _{j+j_{1},v(\beta +\beta _{1})}(\zeta ))\nonumber \\&\quad \quad \quad -2i(n_{1}-(2\pi )^{-1}\langle \beta _{1},\delta ^{*}\rangle )\vert \delta \vert ^{2}(e^{i(n_{1}-(2\pi )^{-1}\langle \beta _{1},\delta ^{*}\rangle )\zeta }\varphi _{j,v(\beta )}^{{\prime }}(\zeta ),\varphi _{j+j_{1},v(\beta +\beta _{1})}(\zeta )). \end{aligned}$$

Using this, (3.5.7), and the formula

$$\begin{aligned}&\sum _{j_{1}}(e^{i(n_{1}-(2\pi )^{-1}\langle \beta _{1},\delta ^{*}\rangle )\zeta }\varphi _{j,v(\beta )}^{{\prime }}(\zeta )),\varphi _{j+j_{1},v(\beta +\beta _{1})}(\zeta ))a(n_{2},-\beta _{1},j+j_{1},\beta +\beta _{1},j,\beta ) \\&=(e^{i(n_{1}+n_{2})\zeta }\varphi _{j,v(\beta )}^{{\prime }}(\zeta )),\varphi _{j,v(\beta )}(\zeta ))+O(\rho ^{-p\alpha }) \end{aligned}$$

which can be proved as (3.5.7), we obtain

$$\begin{aligned}&\sum _{j_{1}}\mu _{j+j_{1}}(v(\beta +\beta _{1})a(n_{1},\beta _{1},j,\beta ,j+j_{1},\beta +\beta _{1})a(n_{2},-\beta _{1},j+j_{1},\beta +\beta _{1},j,\beta )\nonumber \\&\quad \quad =(\vert n_{1}-(2\pi )^{-1}\langle \beta _{1},\delta ^{*}\rangle \vert ^{2})\vert \delta \vert ^{2}+\mu _{j}(v)a(n_{1}+n_{2},0,j,\beta ,j,\beta )\nonumber \\&\quad \qquad - 2i(n_{1}-(2\pi )^{-1}\langle \beta _{1},\delta ^{*}\rangle )\vert \delta \vert ^{2}(e^{i(n_{1}+n_{2})\zeta }\varphi _{j,v(\beta )}^{{\prime }}(\zeta ),\varphi _{j,v(\beta )}(\zeta )). \end{aligned}$$
(3.5.10)

Here the last multiplicand can be estimated as follows

$$\begin{aligned}&\ \mu _{j}(v)(\varphi _{j,v(\beta )}(\zeta ),e^{i(n_{1}+n_{2})\zeta }\varphi _{j,v(\beta )}(\zeta ))=(\varphi _{j,v(\beta )}(\zeta ),T_{v}(e^{i(n_{1}+n_{2})\zeta }\varphi _{j,v(\beta )}(\zeta )))\nonumber \\&\quad =(n_{1}+n_{2})^{2}\vert \delta \vert ^{2}(\varphi _{j,v(\beta )}(\zeta ),e^{i(n_{1}+n_{2})\zeta }\varphi _{j,v(\beta )}(\zeta ))\nonumber \\&\quad \quad +2i(n_{1}+n_{2})\vert \delta \vert ^{2}(\varphi _{j,v(\beta )}(\zeta ),e^{i(n_{1}+n_{2})\zeta }\varphi _{j,v(\beta )}^{{\prime }}(\zeta ))+\mu _{j}(v)(\varphi _{j,v(\beta )},e^{i(n_{1}+n_{2})\zeta }\varphi _{j,v(\beta )}),\nonumber \\&\quad (e^{i(n_{1}+n_{2})\zeta }\varphi _{j,v(\beta )}^{{\prime }}(\zeta )),\varphi _{j,v(\beta )}(\zeta ))=\frac{n_{1}+n_{2}}{2i}(e^{i(n_{1}+n_{2}) \zeta }\varphi _{j,v(\beta )}(\zeta )),\varphi _{j,v(\beta )}(\zeta )). \end{aligned}$$

Using this, (3.5.10), and (3.5.7), we get

$$\begin{aligned}&\sum _{j_{1}}(a(n_{1},\beta _{1},j,\beta ,j+j_{1},\beta +\beta _{1})a(n_{2},-\beta _{1},j+j_{1},\beta +\beta _{1},j,\beta ))\nonumber \\&\quad \times (\vert \beta _{1}\vert ^{2}+\mu _{j+j_{1}}(v(\beta +\beta _{1}))-\mu _{j}(v(\beta )))=a(n_{1}+n_{2},0,j,\beta ,j,\beta )\nonumber \\&\quad \times (\vert \beta _{1}\vert ^{2}+\vert n_{1}-\frac{\langle \beta _{1},\delta ^{*}\rangle }{2\pi }\vert ^{2}\vert \delta \vert ^{2}-(n_{1}-\frac{\langle \beta _{1},\delta ^{*}\rangle }{2\pi })\vert \delta \vert ^{2}(n_{1}+n_{2}))\nonumber \\&=(\vert \beta _{1}\vert ^{2}+\vert \delta \vert ^{2}(n_{1}-\frac{\langle \beta _{1},\delta ^{*}\rangle }{2\pi })(-n_{2}-\frac{\langle \beta _{1},\delta ^{*}\rangle }{2\pi }))a(n_{1}+n_{2},0,j,\beta ,j,\beta ). \end{aligned}$$

Thus

$$\begin{aligned} \overline{C_{1}(j,\lambda _{j,\beta })}=C+O(\rho ^{-3a+2\alpha _{1}}), \end{aligned}$$

where

$$\begin{aligned}&C=\sum _{\beta _{1},n_{1},n_{2}}\frac{c(n_{1},\beta _{1})c(n_{2},-\beta _{1})a(n_{1}+n_{2},0,j,\beta ,j,\beta )}{4\vert \langle \beta +\tau ,\beta _{1}\rangle \vert ^{2}}\nonumber \\&\quad \quad \times (\vert \beta _{1}\vert ^{2}+(n_{1}-\frac{\langle \beta _{1},\delta ^{*}\rangle }{2\pi })(-n_{2}-\frac{\langle \beta _{1},\delta ^{*}\rangle }{ 2\pi })\vert \delta \vert ^{2}). \end{aligned}$$
(3.5.11)

Now we consider

$$\begin{aligned} \int _{F}\left| f_{\delta ,\beta +\tau }(x)\right| ^{2}\left| \varphi _{n,v}(\langle \delta ,x\rangle )\right| ^{2}dx, \end{aligned}$$

where \(f_{\delta ,\beta +\tau }\) is defined in (3.1.12). By (3.5.5)

$$\begin{aligned} f_{\delta ,\beta +\tau }(x)=\sum _{(n_{1},\beta _{1})\in \Gamma _{\delta }^{{\prime }}(\rho ^{\alpha })}\frac{\beta _{1}+(n_{1}-\frac{\langle \beta _{1},\delta ^{*}\rangle }{2\pi })\delta }{\langle \beta +\tau ,\beta _{1}\rangle }c(n_{1},\beta _{1})e^{i\langle \beta _{1}+(n_{1}-\frac{\langle \beta _{1},\delta ^{*}\rangle }{2\pi })\delta ,x\rangle }. \end{aligned}$$

Here \(f_{\delta ,\beta +\tau }(x)\) is a vector of \(\mathbb {R}^{d}\). Using \( \langle \beta ,\delta \rangle =0\) for \(\beta \in \Gamma _{\delta },\) we obtain

$$\begin{aligned}&\left| f_{\delta ,\beta +\tau }(x)\right| ^{2}=\sum _{(n_{1},\beta _{1}),(n_{2},\beta _{2})\in \Gamma _{\delta }^{{\prime }}(\rho ^{\alpha })} \frac{\langle \beta _{1},\beta _{2}\rangle +(n_{1}-\frac{\langle \beta _{1},\delta ^{*}\rangle }{2\pi })(n_{2}-\frac{\langle \beta _{1},\delta ^{*}\rangle }{2\pi })\vert \delta \vert ^{2}}{\langle \beta +\tau ,\beta _{1}\rangle \langle \beta +\tau ,\beta _{2}\rangle }\nonumber \\&\qquad \qquad \qquad \qquad \times c(n_{1},\beta _{1})c(-n_{2},-\beta _{2})e^{i\langle \beta _{1}-\beta _{2}+(n_{1}-n_{2}-(2\pi )^{-1}\langle \beta _{1}-\beta _{2},\delta ^{*}\rangle )\delta ,x\rangle }. \end{aligned}$$

Since \(\varphi _{j,v}(\langle \delta ,x\rangle )\) is a function of \(\langle \delta ,x\rangle ,\) we have

$$\begin{aligned} \int _{F}e^{i\langle \beta _{1}-\beta _{2}+(n_{1}-n_{2}-(2\pi )^{-1}\langle \beta _{1}-\beta _{2},\delta ^{*}\rangle )\delta ,x\rangle }\left| \varphi _{j,v}(\langle \delta ,x\rangle )\right| ^{2}dx=0 \end{aligned}$$

for \(\beta _{1}\ne \beta _{2}\). Therefore

$$\begin{aligned}&\int _{F}\left| f_{\delta ,\beta +\tau }(x)\right| ^{2}\left| \varphi _{j,v}(\langle \delta ,x\rangle )\right| ^{2}dx=\sum _{\beta _{1},n_{1},n_{2}}\frac{c(n_{1},\beta _{1})c(-n_{2},-\beta _{1})}{\vert \langle \beta +\tau ,\beta _{1}\rangle \vert ^{2}}\nonumber \\&\qquad \qquad \qquad \times (\vert \beta _{1}\vert ^{2}+(n_{1}-\frac{\langle \beta _{1},\delta ^{*}\rangle }{2\pi })(n_{2}-\frac{\langle \beta _{1},\delta ^{*}\rangle }{ 2\pi })\vert \delta \vert ^{2}a(n_{1}-n_{2},0,j,\beta ,j,\beta \rangle . \end{aligned}$$

Replacing \(n_{2}\) by \(-n_{2},\) we get

$$\begin{aligned} \int _{F}\left| f_{\delta ,\beta +\tau }(x)\right| ^{2}\left| \varphi _{n,v}(\langle \delta ,x\rangle )\right| ^{2}dx=4C \end{aligned}$$

[see (3.5.11)] and (3.2.34).

3.1.4 Appendix 4: Asymptotic Formulas for \(T_{v}(Q)\)

It is well-known that the large eigenvalues of \(T_{0}(Q)\) lie in \(O(\frac{1}{ m^{4}})\) neighborhood of

$$\begin{aligned} \vert m\delta \vert +\frac{1}{16\pi \vert m\delta \vert ^{3}}\int _{0}^{2\pi }\left| Q(t)\right| ^{2}dt \end{aligned}$$

for the large values of \(m\) (see [Eas], p. 58). This formula yields the invariant (3.1.16). Using the asymptotic formulas for solutions of the Sturm-Liouville equation (see [Eas], p. 63), one can easily obtain that

$$\begin{aligned} \varphi _{n,v}(\zeta )=e^{i(n+v)\zeta }(1+\frac{Q_{1}(\zeta )}{2i(n+v)\vert \delta \vert ^{2}}+\frac{Q(\zeta )-Q(0)-\frac{1}{2}Q_{1}^{2}(\zeta )}{ 4(n+v)^{2}\vert \delta \vert ^{4}})+O(\frac{1}{n^{3}})), \end{aligned}$$

where

$$\begin{aligned} Q_{1}(\zeta )=\int _{0}^{\zeta }Q(t)dt. \end{aligned}$$

From this, by direct calculations, we find \(A_{0}(\zeta ),\) \(A_{1}(\zeta ),\) \(A_{2}(\zeta )\) [see (3.1.6)] and then using these in (3.1.7), we get the invariant (3.1.15).

Now we consider the eigenfunction \(\varphi _{n,v}(\zeta )\) of \(T_{v}(p)\) in the case \(v\ne 0,\ \frac{1}{2}\) and

$$\begin{aligned} p(\zeta )=p_{1}e^{i\zeta }+p_{-1}e^{-i\zeta }. \end{aligned}$$

The eigenvalues and the eigenfunctions of \(T_{v}(0)\) are \(\ (n+v)^{2}\vert \delta \vert ^{2}\) and \(\ e^{i(n+v)\zeta }\), for \(n\in \mathbb {Z}\). Since the eigenvalues of \(T_{v}(p)\) are simple for \(v\ne 0,\ \frac{1}{2},\) by the well-known perturbation formula

$$\begin{aligned}&(\varphi _{n,v}(\zeta ),\ e^{i(n+v)\zeta })\varphi _{n,v}(\zeta )=e^{i(n+v)\zeta }\nonumber \\&\quad +\sum _{k=1,2,\ldots }\frac{(-1)^{k+1}}{2i\pi }\int \limits _{C}(T_{v}(0)-\lambda )^{-1}p(x)^{k}(T_{v}(0)-\lambda )^{-1}e^{i(n+v)\zeta }d\lambda , \end{aligned}$$
(3.5.12)

where \(C\) is a contour containing only the eigenvalue \((n+t)^{2}\vert \delta \vert ^{2}\). Using

$$\begin{aligned} (T_{v}(0)-\lambda )^{-1}e^{i(n+v)\zeta }=\frac{e^{i(n+v)\zeta }}{ (n+v)^{2}\vert \delta \vert ^{2}-\lambda }, \end{aligned}$$

we see that the \(k\)th (\(k=1,2,3,4\)) term \(F_{k}\) of the series (3.5.12) has the form

$$\begin{aligned}&F_{1}=\frac{1}{2i\pi }\int \limits _{C}\sum _{m=1,-1}\frac{p_{m}e^{i(n+m+v) \zeta }}{((n+v)^{2}\vert \delta \vert ^{2}-\lambda )((n+m+v)^{2}\vert \delta \vert ^{2}-\lambda )}d\lambda ,\nonumber \\&F_{2}=\frac{-1}{2i\pi }\int \limits _{C}\sum _{m,l=1,-1}\frac{ p_{m}p_{l}e^{i(n+m+l+v)\zeta }}{((n+v)^{2}\vert \delta \vert ^{2}-\lambda )}\nonumber \\&\qquad \qquad \times \frac{1}{((n+m+v)^{2}\vert \delta \vert ^{2}-\lambda )((n+m+l+v)^{2}\vert \delta \vert ^{2}-\lambda )}d\lambda ,\nonumber \\&F_{3}=\frac{1}{2i\pi }\int \limits _{C}\sum _{m,l,k=1,-1}\frac{ p_{m}p_{l}p_{k}e^{i(n+m+l+k+v)\zeta }}{((n+v)^{2}\vert \delta \vert ^{2}-\lambda )((n+m+v)^{2}\vert \delta \vert ^{2}-\lambda )}\nonumber \\&\qquad \qquad \times \frac{1}{((n+m+l+v)^{2}\vert \delta \vert ^{2}-\lambda )((n+m+l+k+v)^{2}\vert \delta \vert ^{2}-\lambda )}d\lambda ,\nonumber \\&F_{4}=\frac{-1}{2i\pi }\int \limits _{C}\sum _{m,l,k,r=1,-1}\frac{ p_{m}p_{l}p_{k}p_{r}e^{i(n+m+l+k+r+v)\zeta }}{((n+m+l+k+r+v)^{2}\vert \delta \vert ^{2}-\lambda )}\nonumber \\&\qquad \qquad \times \frac{1}{((n+m+v)^{2}\vert \delta \vert ^{2}-\lambda )((n+m+l+v)^{2}\vert \delta \vert ^{2}-\lambda )}\nonumber \\&\qquad \qquad \times \frac{1}{((n+m+l+k+v)^{2}\vert \delta \vert ^{2}-\lambda )((n+v)^{2}\vert \delta \vert ^{2}-\lambda )}d\lambda . \end{aligned}$$

Since the distance between \((n+v)^{2}\vert \delta \vert ^{2}\) and \( (n^{{\prime }}+v)^{2}\vert \delta \vert ^{2}\) for \(n^{{\prime }}\ne n\) is greater than \(c_{17}n\), we can choose the contour \(C\) such that

$$\begin{aligned} \frac{1}{\vert (n^{{\prime }}+v)^{2}\vert \delta \vert ^{2}-\lambda \vert }< \frac{c_{18}}{n},\,\forall \lambda \in C,\,\forall n^{{\prime }}\ne n \end{aligned}$$

and the length of \(C\) is less than \(c_{19}\). Therefore

$$\begin{aligned} F_{5}+F_{6}+\cdots =O(n^{-5}). \end{aligned}$$

Now we calculate the integrals in \(F_{1}\), \(F_{2}\), \(F_{3}\), \(F_{4}\) by the Cauchy integral formula and then decompose the obtained expression in power of \(\frac{1}{n}\). Then

$$\begin{aligned}&F_{1}=e^{i(n+v)\zeta }((p_{1}e^{i\zeta }-p_{-1}e^{-i\zeta })\frac{1}{\vert \delta \vert ^{2}}(\frac{-1}{2n}+\frac{v}{2n^{2}}-\frac{4v^{2}+1}{8n^{3}}+O( \frac{1}{n^{4}}))\nonumber \\&\qquad \qquad +\,(p_{1}e^{i\zeta }+p_{-1}e^{-i\zeta })\frac{1}{\vert \delta \vert ^{2}}(\frac{v }{4n^{2}}-\frac{v}{2n^{3}}+\frac{12v^{2}+1}{16n^{4}}+O(\frac{1}{n^{5}}))). \end{aligned}$$

Let \(F_{2,1}\) and \(F_{2,2}\) be the sum of the terms in \(F_{2}\) for which \( m+l=\pm 2\) and \(m+l=0\) respectively, i.e.,

$$\begin{aligned} F_{2}=F_{2,1}+F_{2,2}, \end{aligned}$$

where

$$\begin{aligned}&F_{2,1}=e^{i(n+v)\zeta }(((p_{1})^{2}e^{2i\zeta }+(p_{-1})^{2}e^{-2i\zeta }) \frac{1}{\vert \delta \vert ^{4}}(\frac{-1}{8n^{2}}+\frac{-v}{4n^{3}}-\frac{ 12v^{2}+7}{32n^{4}}+O(\frac{1}{n^{5}}))\nonumber \\&\qquad \quad \quad +\,((p_{1})^{2}e^{2i\zeta }-(p_{-1})^{2}e^{-2i\zeta })\frac{1}{\vert \delta \vert ^{4}}(\frac{-3}{16n^{3}}+O(\frac{1}{n^{4}}))),\nonumber \\&F_{2,2}=e^{i(n+v)\zeta }\left| p_{1}\right| ^{2}(\frac{c_{20}}{n^{2}} +\frac{c_{21}}{n^{3}}+\frac{c_{22}}{n^{4}}+O(\frac{1}{n^{5}})) \end{aligned}$$

and \(c_{20},c_{21},c_{22}\) are the known constants. Similarly,

$$\begin{aligned} F_{3}=F_{3,1}+F_{3,2}, \end{aligned}$$

where \(F_{3,1}\) and \(F_{3,2}\) are the sum of the terms in \(F_{3}\) for which \(m+l+k=\pm 3\) and \(m+l+k=\pm 1\) respectively. Hence

$$\begin{aligned}&F_{3,1}=e^{i(n+v)\zeta }((p_{1}^{3}e^{3i\zeta }-p_{-1}^{3}e^{-i\zeta })\frac{ 1}{\vert \delta \vert ^{6}}(\frac{-1}{48n^{3}}+O(\frac{1}{n^{4}}))\nonumber \\&\qquad \qquad +\,(p_{1}^{3}e^{3i\zeta }+p_{-1}^{3}e^{-3i\zeta })\frac{1}{\vert \delta \vert ^{6} }(\frac{1}{16n^{4}}+O(\frac{1}{n^{5}}))),\nonumber \\&F_{3,2}=e^{i(n+v)\zeta }((p_{1}e^{i\zeta }-p_{-1}e^{-i\zeta })\left| p_{1}\right| ^{2}(\frac{c_{23}}{n^{3}}+\frac{c_{24}}{n^{4}}+O(\frac{1}{ n^{5}}))\nonumber \\&\qquad \qquad +\,(p_{1}e^{i\zeta }+p_{-1}e^{-i\zeta })\left| p_{1}\right| ^{2}(\frac{ c_{25}}{n^{4}}+O(\frac{1}{n^{5}}))). \end{aligned}$$

Similarly

$$\begin{aligned} F_{4}=F_{4,1}+F_{4,2}+F_{4,3}, \end{aligned}$$

where \(F_{4,1}\), \(F_{4,2}\), \(F_{4,3}\) are the sum of the terms in \(F_{4}\) for which \(m+l+k+r=\pm 4\), \(m+l+k+r=\pm 2\), \(m+l+k+r=0\) respectively. Thus

$$\begin{aligned} F_{4,1}&=e^{i(n+v)\zeta }(p_{1}^{4}e^{4i\zeta }+p_{-1}^{4}e^{-4i\zeta })\frac{ 1}{\vert \delta \vert ^{8}}(\frac{1}{384n^{4}}+O(\frac{1}{n^{5}})),\nonumber \\ F_{4,2}&=e^{i(n+v)\zeta }(p_{1}^{2}e^{2i\zeta }+p_{-1}^{2}e^{-2i\zeta })\left| p_{1}\right| ^{2}(\frac{c_{26}}{n^{4}}+O(\frac{1}{n^{5}}))),\nonumber \\ F_{4,3}&=e^{i(n+v)\zeta }\left| p_{1}\right| ^{4}(\frac{c_{27}}{n^{4}} +O(\frac{1}{n^{5}}))). \end{aligned}$$

Since \(p_{-1}^{k}e^{-ik\zeta }\) is conjugate of \(p_{1}^{k}e^{ik\zeta },\) the real and imaginary parts of \(F_{k}e^{-i(n+v)\zeta }\) consist of terms with multiplicands

$$ \begin{aligned} p_{1}^{k}e^{ik\zeta }+p_{-1}^{k}e^{-ki\zeta }\quad \& \quad p_{1}^{k}e^{ik\zeta }-p_{-1}^{k}e^{-ik\zeta } \end{aligned}$$

respectively. Taking into account this and using the above estimations, we get

$$\begin{aligned} |(\varphi _{n,v},e^{i(n+v)\zeta })\varphi _{n,v}|^{2}&= 2(\sum _{k=1,2,3,4} \mathbf {Re(}F_{k})+\mathbf {Re(}F_{1}F_{2})+\mathbf {Re(} F_{1}F_{3}))+|F_{1}|^{2}+|F_{2}|^{2}+O(n^{-5})\nonumber \\&=1+\frac{1}{2n^{2}}\frac{1}{\vert \delta \vert ^{2}}(p_{1}e^{i\zeta }+p_{-1}e^{-i\zeta }+c_{28}|p_{1}|^{2})+\frac{1}{n^{3}}((p_{1}e^{i\zeta }+p_{-1}e^{-i\zeta })c_{29}\nonumber \\&\quad +c_{30}|p_{1}|^{2})+\frac{1}{n^{4}}((p_{1}e^{i\zeta }+p_{-1}e^{-i\zeta })c_{31}+c_{32}|p_{1}|^{2}+c_{33}|p_{1}|^{4}\nonumber \\&\quad +c_{34}|p_{1}|^{2}(p_{1}e^{i\zeta }+p_{-1}e^{-i\zeta })+(c_{35}+c_{36}|p_{1}|^{2})(p_{1}^{2}e^{2i\zeta }+p_{-1}^{2}e^{-2i\zeta }))\nonumber \\&\quad +O(\frac{1}{n^{5}}), \end{aligned}$$

where \(\mathbf {Re(}F)\) denotes the real part of \(F.\) On the other hand

$$\begin{aligned} |(\varphi _{n,v}(\zeta ),e^{i(n+v)\zeta })|^{2}=(c_{37}\frac{1}{n^{2}}+c_{38} \frac{1}{n^{3}}+c_{39}\frac{1}{n^{4}})|p_{1}|^{2}+c_{40}\frac{1}{n^{4}} |p_{1}|^{4}+O(\frac{1}{n^{5}}). \end{aligned}$$

These equalities imply (3.1.18). The invariant (3.1.19) is a consequence of (3.1.18), (3.1.16) and (3.1.7) for \(k=2,4\) \(\blacksquare \)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Veliev, O. (2015). Constructive Determination of the Spectral Invariants. In: Multidimensional Periodic Schrödinger Operator. Springer Tracts in Modern Physics, vol 263. Springer, Cham. https://doi.org/10.1007/978-3-319-16643-8_3

Download citation

Publish with us

Policies and ethics