Skip to main content

Wastewater as a Source of Nutrients for Microalgae Biomass Production

  • Chapter
  • First Online:
Biomass and Biofuels from Microalgae

Abstract

Production of microalgal biomass requires large amounts of nitrogen (N) and phosphorus (P). The sustainability and economic viability of microalgae production could be significantly improved if N and P are not supplied by synthetic fertilizers but with wastewater. Microalgae already play an important role in wastewater treatment, yet several challenges remain to optimally convert wastewater nutrients into microalgal biomass. This book chapter aims to give an overview of the potential of using wastewater for microalgae production, as well some challenges that should be taken into account. We also review the benefits of combining microalgal biomass production with wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Azov Y, Goldman J (1982) Free ammonia inhibition of algal photosynthesis in intensive cultures. Appl Environ Microbiol 43:735–739

    Google Scholar 

  • Beal CM, Stillwell AS, King CW et al (2012) Energy return on investment for algal biofuel production coupled with wastewater treatment. Water Environ Res 84:692–710

    Google Scholar 

  • Becker EW (2007) Micro-algae as a source of protein. Biotechnol Adv 25:207–210

    Google Scholar 

  • Belay A (1997) Mass culture of Spirulina outdoors: the Earthrise Farms experience. In: Spirulina platensis (Arthrospira): physiology, cell-biology and biotechnology. Taylor & Francis, London, pp 131–158

    Google Scholar 

  • Benemann J (2013) Microalgae for biofuels and animal feeds. Energies 6:5869–5886

    Google Scholar 

  • Benemann J, Woertz I, Lundquist T (2012) Life cycle assessment for microalgae oil production. Disruptive Sci Technol 1:68–78

    Google Scholar 

  • Benemann JR, Koopman B, Eisenberg D, Goebel R (1980) Development of microalgal harvesting and high-rate pond technologies in California. In: Shelef G, Soeder CJ (eds) Algae Biomass. Elsevier, Amsterdam, pp 457–494

    Google Scholar 

  • Beuckels A, Depraetere O, Vandamme D et al (2013) Influence of organic matter on flocculation of Chlorella vulgaris by calcium phosphate precipitation. Biomass Bioenergy 54:107–114

    Google Scholar 

  • Bhatnagar A, Chinnasamy S, Singh M, Das KC (2011) Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. Appl Energy 88:3425–3431

    Google Scholar 

  • Bilad MR, Arafat HA, Vankelecom IFJ (2014) Membrane technology in microalgae cultivation and harvesting: a review. Biotechnol Adv 32:1283–1300

    Google Scholar 

  • Blais C, Fournier R, Marsot P (1984) Continuous microalgal culture using swine manure dialysate as a nutrient source. Aquacult Eng 3:275–287

    Google Scholar 

  • Boelee NC, Janssen M, Temmink H et al (2013) The effect of harvesting on biomass production and nutrient removal in phototrophic biofilm reactors for effluent polishing. J Appl Phycol 26:1439–1452

    Google Scholar 

  • Borowitzka LJ, Moulton TP, Borowitzka MA (1985) Salinity and the commercial production of beta-carotene from Dunaliella salina. Algal biomass: an interdisciplinary perspective 217–222

    Google Scholar 

  • Bouwman AF, Van Der Hoek KW (1997) Scenarios of animal waste production and fertilizer use and associated ammonia emission for the developing countries. Atmos Environ 31:4095–4102

    Google Scholar 

  • Brezonik P, Arnold W (2011) Water chemistry: an introduction to the chemistry of natural and engineered aquatic systems 808p

    Google Scholar 

  • Bronk D, See J, Bradley P, Killberg L (2007) DON as a source of bioavailable nitrogen for phytoplankton. Biogeosciences 283–296

    Google Scholar 

  • Cai T, Park SY, Li Y (2013) Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew Sustain Energy Rev 19:360–369

    Google Scholar 

  • Cauchie H, Hoffman L, Thomé J (2000) Metazooplankton dynamics and secondary production of Daphnia magna (Crustacea) in an aerated waste stabilization pond. J Plankton Res 22:2263–2287

    Google Scholar 

  • Chisti Y (2013) Constraints to commercialization of algal fuels. J Biotechnol 167:201–214

    Google Scholar 

  • Chiu Y-W, Wu M (2013) Considering water availability and wastewater resources in the development of algal bio-oil. Biofuels Bioprod Biorefin 7:406–415

    Google Scholar 

  • Christenson L, Sims R (2011) Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv 29:686–702

    Google Scholar 

  • Clarens AF, Resurreccion EP, White MA, Colosi LM (2010) Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol 44:1813–1819

    Google Scholar 

  • Cordell D, Rosemarin A, Schröder JJ, Smit AL (2011) Towards global phosphorus security: a systems framework for phosphorus recovery and reuse options. Chemosphere 84:747–758

    Google Scholar 

  • Craggs R, Lundquist TJ, Benemann JR (2013) Wastewater treatment and algal biofuel production. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Berlin, pp 153–163

    Google Scholar 

  • Craggs R, Smith V, McAuley P (1995) Wastewater nutrient removal by marine microalgae cultured under ambient conditions in mini-ponds. Water Sci Technol 31:151–160

    Google Scholar 

  • Davies-Colley RJ, Donnison AM, Speed D et al (1999) Inactivation of faecal indicator micro-organisms in waste stabilisation ponds: interactions of environmental factors with sunlight. Water Res 33:1220–1230

    Google Scholar 

  • Dawson CJ, Hilton J (2011) Fertiliser availability in a resource-limited world: Production and recycling of nitrogen and phosphorus. Food Policy 36:S14–S22

    Google Scholar 

  • De Pauw N, Verlet H, De Leenheer Jr L (1980) Heated and unheated outdoor cultures of marine algae with animal manure. Algae Biomass 315–341

    Google Scholar 

  • Depraetere O, Foubert I, Muylaert K (2013) Decolorisation of piggery wastewater to stimulate the production of Arthrospira platensis. Bioresour Technol 148:366–372

    Google Scholar 

  • Draaisma RB, Wijffels RH, Slegers PME et al (2013) Food commodities from microalgae. Curr Opin Biotechnol 24:169–177

    Google Scholar 

  • Duncan M (2004) Domestic wastewater treatment in developing countries. Routlegde London

    Google Scholar 

  • Ekholm P, Krogerus K (2003) Determining algal-available phosphorus of differing origin: routine phosphorus analyses versus algal assays. Hydrobiologia 492:29–42

    Google Scholar 

  • Elser JJ (2012) Phosphorus: a limiting nutrient for humanity? Curr Opin Biotechnol 23:833–838

    Google Scholar 

  • Elser JJ, Fagan WF, Denno RF et al (2000) Nutritional constraints in terrestrial and freshwater food webs. Nature 408:578–580

    Google Scholar 

  • Eroglu E, Agarwal V, Bradshaw M et al (2012) Nitrate removal from liquid effluents using microalgae immobilized on chitosan nanofiber mats. Green Chem 14:2682

    Google Scholar 

  • Fortier M-OP, Sturm BSM (2012) Geographic analysis of the feasibility of collocating algal biomass production with wastewater treatment plants. Environ Sci Technol 46:11426–11434

    Google Scholar 

  • Gadd GM (2009) Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol 84:13–28

    Google Scholar 

  • Garcia J, Mujeriego R, Hernandez-Marine M (2000) High rate algal pond operating strategies for urban wastewater nitrogen removal. J Appl Phycol 12:331–339

    Google Scholar 

  • Geider R, Roche J (2002) Redfield revisited: variability of C:N: P in marine microalgae and its biochemical basis. Eur J Phycol 37:1–17

    Google Scholar 

  • Gerke J (2010) Humic (organic matter)-Al(Fe)-phosphate complexes. Soil Sci 175:417–425

    Google Scholar 

  • González-Fernández C, Ballesteros M (2013) Microalgae autoflocculation: an alternative to high-energy consuming harvesting methods. J Appl Phycol 25:991–999

    Google Scholar 

  • Hoffmann JP (1998) Wastewater treatment with suspended and nonsuspende algae. J Phycol 34:757–763

    Google Scholar 

  • Huang B, Hong H (1999) Alkaline phosphatase activity and utilization of dissolved organic phosphorus by algae in subtropical coastal waters. Mar Pollut Bull 39:205–211

    Google Scholar 

  • Huisman J, Matthijs HCP, Visser PM et al (2002) Principles of the light-limited chemostat: theory and ecological applications. Antonie Van Leeuwenhoek 81:117–133

    Google Scholar 

  • Jiang L, Luo S, Fan X et al (2011) Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2. Appl Energy 88:3336–3341

    Google Scholar 

  • Johnson MC, Palou-Rivera I, Frank ED (2013) Energy consumption during the manufacture of nutrients for algae cultivation. Algal Research 2:426–436

    Google Scholar 

  • Jongbloed A, Lenis N (1998) Environmental concerns about animal manure. J Anim Sci 76:2641–2648

    Google Scholar 

  • Kazamia E, Aldridge DC, Smith AG (2012) Synthetic ecology—a way forward for sustainable algal biofuel production? J Biotechnol 162:163–169

    Google Scholar 

  • Kesaano M, Sims RC (2014) Algal biofilm based technology for wastewater treatment. Algal Research 5:231–240

    Google Scholar 

  • Klausmeier C, Litchman E, Daufresne T, Levin S (2004) Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature 429:171–174

    Google Scholar 

  • Lam MK, Lee KT (2011) Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv 30:673–690

    Google Scholar 

  • Lardon L, Hélias A, Sialve B et al (2009) Life-Cycle Assessment of Biodiesel Production from Microalgae. Environ Sci Technol 43:6475–6481

    Google Scholar 

  • Lee AK, Lewis DM, Ashman PJ (2008) Microbial flocculation, a potentially low-cost harvesting technique for marine microalgae for the production of biodiesel. J Appl Phycol 21:559–567

    Google Scholar 

  • Lee J, Cho D-H, Ramanan R et al (2012) Microalgae-associated bacteria play a key role in the flocculation of Chlorella vulgaris. Bioresour Technol 131C:195–201

    Google Scholar 

  • Li B, Brett MT (2013) The influence of dissolved phosphorus molecular form on recalcitrance and bioavailability. Environmental Pollution (Barking, Essex : 1987) 182:37–44

    Google Scholar 

  • Lodi A, Binaghi L, Solisio C et al (2003) Nitrate and phosphate removal by Spirulina platensis. J Ind Microbiol Biotechnol 30:656–660

    Google Scholar 

  • López CVG, García MDCC, Fernández FGA et al (2010) Protein measurements of microalgal and cyanobacterial biomass. Bioresour Technol 101:7587–7591

    Google Scholar 

  • Lundquist TJ, Woertz IC, Quinn NWT, Benemann JR (2010) A realistic technology and engineering assessment of algae biofuel production. Berkeley

    Google Scholar 

  • Mallick N (2002) Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. Biometals: Int J Role Metal Ions Biol Biochem Med 15:377–390

    Google Scholar 

  • Marcilhac C, Sialve B, Pourcher A-M et al (2014) Digestate color and light intensity affect nutrient removal and competition phenomena in a microalgal-bacterial ecosystem. Water Res 64:278–287

    Google Scholar 

  • Markou G, Angelidaki I, Georgakakis D (2012a) Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Appl Microbiol Biotechnol 96:631–645

    Google Scholar 

  • Markou G, Chatzipavlidis I, Georgakakis D (2012b) Cultivation of Arthrospira (Spirulina) platensis in olive-oil mill wastewater treated with sodium hypochlorite. Bioresour Technol 112:234–241

    Google Scholar 

  • Markou G, Vandamme D, Muylaert K (2014) Using natural zeolite for ammonia sorption from wastewater and as nitrogen releaser for the cultivation of Arthrospira platensis. Bioresour Technol 155:373–378

    Google Scholar 

  • Martin C, la Noüe JD, Picard G (1985) Intensive cultivation of freshwater microalgae on aerated pig manure. Biomass 7:245–259

    MATH  Google Scholar 

  • Menger-Krug E, Niederste-Hollenberg J, Hillenbrand T, Hiessl H (2012) Integration of microalgae systems at municipal wastewater treatment plants: implications for energy and emission balances. Environ Sci Technol 46:11505–11514

    Google Scholar 

  • Moreno-Garrido I, Cañavate JP (2001) Assessing chemical compounds for controlling predator ciliates in outdoor mass cultures of the green algae Dunaliella salina. Aquacult Eng 24:107–114

    Google Scholar 

  • Mulbry W, Kondrad S, Pizarro C, Kebede-Westhead E (2008) Treatment of dairy manure effluent using freshwater algae: algal productivity and recovery of manure nutrients using pilot-scale algal turf scrubbers. Bioresour Technol 99:8137–8142

    Google Scholar 

  • Nicholson FA, Chambers BJ, Williams JR, Unwin RJ (1999) Heavy metal contents of livestock feeds and animal manures in England and Wales. Bioresour Technol 70:23–31

    Google Scholar 

  • Nurdogan Y, Oswald WJ (1995) Enhanced nutrient removal in high-rate ponds. Water Sci Technol 31:33–43

    Google Scholar 

  • Olguín EJ (2012) Dual purpose microalgae-bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a biorefinery. Biotechnol Adv 30:1031–1046

    Google Scholar 

  • Oliveira M, Machado AV (2013) The role of phosphorus on eutrophication: a historical review and future perspectives. Environ Technol Rev 2:117–127

    Google Scholar 

  • Oswald WJ, Golueke CG (1960) Biological transformation of solar energy. Adv Appl Microbiol 2:223–262

    Google Scholar 

  • Owen W (1982) Energy in wastewater treatment. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Park JBK, Craggs RJ, Shilton AN (2011a) Recycling algae to improve species control and harvest efficiency from a high rate algal pond. Water Res 45:6637–6649

    Google Scholar 

  • Park JBK, Craggs RJ, Shilton AN (2011b) Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102:35–42

    Google Scholar 

  • Park JBK, Craggs RJ, Shilton AN (2013) Investigating why recycling gravity harvested algae increases harvestability and productivity in high rate algal ponds. Water Res 47:4904–4917

    Google Scholar 

  • Pate R, Klise G, Wu B (2011) Resource demand implications for US algae biofuels production scale-up. Appl Energy 88:3377–3388

    Google Scholar 

  • Peccia J, Haznedaroglu B, Gutierrez J, Zimmerman JB (2013) Nitrogen supply is an important driver of sustainable microalgae biofuel production. Trends Biotechnol 31:134–138

    Google Scholar 

  • Pehlivanoglu E, Sedlak DL (2004) Bioavailability of wastewater-derived organic nitrogen to the alga Selenastrum capricornutum. Water Res 38:3189–3196

    Google Scholar 

  • Pfromm PH, Amanor-Boadu V, Nelson R (2011) Sustainability of algae derived biodiesel: a mass balance approach. Bioresour Technol 102:1185–1193

    Google Scholar 

  • Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102:17–25

    Google Scholar 

  • Powell N, Shilton A, Chisti Y, Pratt S (2009) Towards a luxury uptake process via microalgae–defining the polyphosphate dynamics. Water Res 43:4207–4213

    Google Scholar 

  • Prajapati SK, Kaushik P, Malik A, Vijay VK (2013) Phycoremediation coupled production of algal biomass, harvesting and anaerobic digestion: possibilities and challenges. Biotechnol Adv 31:1408–1425

    Google Scholar 

  • Ptacnik R, Solimini AG, Andersen T et al (2008) Diversity predicts stability and resource use efficiency in natural phytoplankton communities. Proc Natl Acad Sci USA 105:5134–5138

    Google Scholar 

  • Rahman A, Ellis JT, Miller CD (2012) Bioremediation of domestic wastewater and production of bioproducts from microalgae using waste stabilization ponds. J Bioremediat Biodegradation 3:6199

    Google Scholar 

  • Ruiz-Marin A, Mendoza-Espinosa LG, Stephenson T (2010) Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresour Technol 101:58–64

    Google Scholar 

  • Rwehumbiza VM, Harrison R, Thomsen L (2012) Alum-induced flocculation of preconcentrated Nannochloropsis salina: residual aluminium in the biomass, FAMEs and its effects on microalgae growth upon media recycling. Chem Eng J 200–202:168–175

    Google Scholar 

  • Salim S, Bosma R, Vermuë MH, Wijffels RH (2011) Harvesting of microalgae by bio-flocculation. J Appl Phycol 23:849–855

    Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E et al (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. BioEnergy Res 1:20–43

    Google Scholar 

  • Schlüter M, Groeneweg J, Soeder C (1987) Impact of rotifer grazing on population dynamics of green microalgae in high-rate ponds. Water Res 21:1293–1297

    Google Scholar 

  • See JH, Bronk DA (2005) Changes in C: N ratios and chemical structures of estuarine humic substances during aging. Mar Chem 97:334–346

    Google Scholar 

  • Sheehan J, Dunahay T, Benemann JR, Roessler P (1998) A look back at the US Department of Energy’s Aquatic Species Program: biodiesel from algae. National Renewable Energy Laboratory Denver, CO

    Google Scholar 

  • Shilton AN, Powell N, Guieysse B (2012) Plant based phosphorus recovery from wastewater via algae and macrophytes. Curr Opin Biotechnol 23:884–889

    Google Scholar 

  • Shurin JB, Abbott RL, Deal MS et al (2013) Industrial-strength ecology: trade-offs and opportunities in algal biofuel production. Ecol Lett 16:1393–1404

    Google Scholar 

  • Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27:409–416

    Google Scholar 

  • Smil V (2002) Nitrogen and food production: proteins for human diets. Ambio 31:126–131

    Google Scholar 

  • Smith VH, Sturm BSM, Denoyelles FJ, Billings SA (2010) The ecology of algal biodiesel production. Trends Ecol Evol (Personal edition) 25:301–309

    Google Scholar 

  • Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to biosphere. Princeton University Press, Princeton

    Google Scholar 

  • Sturm BSM, Lamer SL (2011) An energy evaluation of coupling nutrient removal from wastewater with algal biomass production. Appl Energy 88:3499–3506

    Google Scholar 

  • Su Y, Mennerich A, Urban B (2011) Municipal wastewater treatment and biomass accumulation with a wastewater-born and settleable algal-bacterial culture. Water Res 45:3351–3358

    Google Scholar 

  • Sukenik A, Schröder W, Lauer J et al (1985) Coprecipitation of microalgal biomass with calcium and phosphate ions. Water Res 19:127–129

    Google Scholar 

  • Sukenik A, Shelef G (1984) Algal autoflocculation-verification and proposed mechanism. Biotechnol Bioeng 26:142–147

    Google Scholar 

  • Trentacoste EM, Martinez AM, Zenk T (2014) The place of algae in agriculture: policies for algal biomass production. Photosynth Res. doi:10.1007/s11120-014-9985-8

    Google Scholar 

  • Uduman N, Qi Y, Danquah MK et al (2010) Dewatering of microalgal cultures: A major bottleneck to algae-based fuels. J Renew Sustain Energy 2:012701

    Google Scholar 

  • Uggetti E, Sialve B, Trably E, Steyer J-P (2014) Integrating microalgae production with anaerobic digestion: a biorefinery approach. Biofuels Bioprod Biorefin 8:516–529

    Google Scholar 

  • Van Den Hende S, Beelen V, Bore G et al (2014) Up-scaling aquaculture wastewater treatment by microalgal bacterial flocs: from lab reactors to an outdoor raceway pond. Bioresour Technol 159:342–354

    Google Scholar 

  • Van Den Hende S, Vervaeren H, Saveyn H et al (2011) Microalgal bacterial floc properties are improved by a balanced inorganic/organic carbon ratio. Biotechnol Bioeng 108:549–558

    Google Scholar 

  • Van Harmelen T, Oonk H (2006) Microalgae biofixation processes: applications and potential contributions to greenhouse gas mitigation options. Apeldoorn

    Google Scholar 

  • Van Moorleghem C, De Schutter N, Smolders E, Merckx R (2013) The bioavailability of colloidal and dissolved organic phosphorus to the alga Pseudokirchneriella subcapitata in relation to analytical phosphorus measurements. Hydrobiologia 709:41–53

    Google Scholar 

  • Vandamme D, Foubert I, Muylaert K (2013) Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends Biotechnol 31:233–239

    Google Scholar 

  • Venteris ER, Skaggs RL, Wigmosta MS, Coleman AM (2014) A national-scale comparison of resource and nutrient demands for algae-based biofuel production by lipid extraction and hydrothermal liquefaction. Biomass Bioenergy 64:276–290

    Google Scholar 

  • Wang H, Zhang W, Chen L et al (2013) The contamination and control of biological pollutants in mass cultivation of microalgae. Bioresour Technol 128:745–750

    Google Scholar 

  • Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27:195–226

    Google Scholar 

  • Wijffels RH, Barbosa MJ, Eppink MHM (2010) Microalgae for the production of bulk chemicals and biofuels. Biofuels Bioprod Biorefin 4:287–295

    Google Scholar 

  • Wilde EW, Benemann JR (1993) Bioremoval of heavy metals by the use of microalgae. Biotechnol Adv 11:781–812

    Google Scholar 

  • Wilson BA, Smith VH, DeNoyelles F, Larive CK (2003) Effects of three pharmaceutical and personal care products on natural freshwater algal assemblages. Environ Sci Technol 37:1713–1719

    Google Scholar 

  • Zamalloa C, Boon N, Verstraete W (2013) Decentralized two-stage sewage treatment by chemical-biological flocculation combined with microalgae biofilm for nutrient immobilization in a roof installed parallel plate reactor. Bioresour Technol 130:152–160

    Google Scholar 

  • Zhang J, Hu B (2008) Microbial Biodiesel Production-oil feedstocks produced from microbial cell cultivations. cdn.intechweb.org

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koenraad Muylaert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Muylaert, K., Beuckels, A., Depraetere, O., Foubert, I., Markou, G., Vandamme, D. (2015). Wastewater as a Source of Nutrients for Microalgae Biomass Production. In: Moheimani, N., McHenry, M., de Boer, K., Bahri, P. (eds) Biomass and Biofuels from Microalgae. Biofuel and Biorefinery Technologies, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-16640-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16640-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16639-1

  • Online ISBN: 978-3-319-16640-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics