Skip to main content

The Anaerobic Digestion of Microalgae Feedstock, “Life-Cycle Environmental Impacts of Biofuels and Co-products”

  • Chapter
  • First Online:
Biomass and Biofuels from Microalgae

Part of the book series: Biofuel and Biorefinery Technologies ((BBT,volume 2))

  • 3187 Accesses

Abstract

Anaerobic digestion offers a potential pathway to eliminate some of the overheads for microalgae-based biofuels bio-refinery production systems. It is anticipated that the incorporation and integration of anaerobic digestion with microalgae-based biofuels production is able to attain higher efficiency and improve sustainability in the production of biofuels from microalgae. This chapter investigates several of the technical issues associated with anaerobic digestion of microalgae biomass including the low concentration of biodegradable (digestible) microalgae substrates, cell wall disruption and high lipid concentrations. Also highlighted is when the incorporation of anaerobic digestion into a biofuels bio-refinery concept, several anaerobic digestion-related issues can be addressed by the pre-treatment methods used to process microalgae for liquid and gaseous biofuels. This chapter also discusses other technical issues associated with the anaerobic digestion of microalgae including ammonia inhibition, low C/N ratio and co-digestion. Gas produced by the anaerobic digestion of residual microalgae biomass can be used for electrical or thermal energy within the microalgae biofuels bio-refinery, while the high density microalgae cultures can provide efficient biogas purification. The resulting digestate has been shown to be an ideal nutrient source for the continued growth of additional microalgae biomass, and helps to close the nutrient loop associated with large-scale microalgae biomass production. With a greater understanding of the different microalgae species and their characteristics, the anaerobic digestion of microalgae and their residues must be optimised to play an essential role in the sustainable future of clean energy derived from microalgae biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asinari Di San Marzano CM, Legros A, Naveau HP, Nyns EJ (1983) Biomethanation of the marine algae Tetraselmis. Int J Solar Energy 1:263–272

    Article  Google Scholar 

  • Benemann JR, Weissman JC, Koopman BL, Oswald WJ (1977) Energy production by microbial photosynthesis. Nature 268:19–23

    Article  Google Scholar 

  • Bligh E, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Bio-Chem Physiol 37(8):911–917

    Google Scholar 

  • Buswell AM, Boruff CS (1932) The relationship between chemical composition of organic matter and the quality and quantity of gas produced during sludge digestion. Sewage Works J 4(3):454–460

    Google Scholar 

  • Buxy S, Diltz R, Pullammanappallil P (2013) Biogasification of marine algae Nannochloropsis oculata. Ceram Trans 239:56–67

    Google Scholar 

  • Callander IJ, Barford JP (1983) Cheese whey anaerobic digestion—effect of chemical flocculation. Biotechnol Lett 5(3):153–158

    Article  Google Scholar 

  • Campos E, Almirall M, Mtenz-Almela J, Palatsi J, Floats X (2008) Feasability study of the anaerobic digestion of dewatered pig slurry by means of polyacrylamide. Bioresour Technol 99:387–395

    Article  Google Scholar 

  • Chen PH (1987) Factors influencing methane fermentation of micro-alga. Dissertation, University of California, Berkley

    Google Scholar 

  • Chen PH, Oswald WJ (1998) Thermochemical treatment for algal fermentation. Environ Int 24(8):889–897

    Article  Google Scholar 

  • Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064

    Article  Google Scholar 

  • Cirne DG, Paloumet X, Bjornsson L, Alves MM, Mattiasson B (2007) Anaerobic digestion of lipid rich waste—effects of lipid concentration. Renew Energy 32:965–975

    Article  Google Scholar 

  • Clesceri LS, Greenberg AE, Eaton AD (eds) (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington, USA

    Google Scholar 

  • Collet P, Helias A, Lardon L, Ras M, Goy R, Steyer J (2010) Life-cycle assessment of microalgae culture coupled to biogas production. Bioresour Technol 102:207–214

    Article  Google Scholar 

  • Converti A, Oliveira RPS, Torres BR, Lodi A, Zilli M (2009) Biogas production and valorization by means of a two step biological process. Bioresour Technol 100:5771–5776

    Article  Google Scholar 

  • Costa JAV, Santana FB, Andrade MR, Lima MB, Frank DT (2008) Microalga biomass and biomethane production in the south of Brazil. Biotechnol Lett 136:S402–S403

    Google Scholar 

  • De Schamphelaire L, Verstraete W (2009) Revival of the biological sunlight-to-biogas energy conversion system. Biotechnol Bioeng 103(2):296–304

    Article  Google Scholar 

  • Dinsdale RM, Hawkes FR, Hawkes DL (1996) Mesophilic, thermophilic anaerobic digestion with thermophilic pre-acidification of instant coffee production wastewater. Water Res 31:1931–1938

    Article  Google Scholar 

  • Dugba PN, Zhang R (1999) Treatment of dairy wastewater with two stage anaerobic sequencing batch reactor systems: thermophilic versus mesophilic operations. Bioresour Technol 68:225–233

    Article  Google Scholar 

  • Ehimen EA, Connaughton S, Sun Z, Carington GC (2009) Energy recovery from lipid extracted, transesterified and glycerol codigested microbial biomass. GCB Bioenergy 1:371–381

    Article  Google Scholar 

  • Erkelens M, Ward AJ, Ball AS, Lewis D (2014) Microalgae digestate effluent as a growth medium for Tetraselmis sp. in the production of biofuels. Bioresour Technol 167:81–86

    Article  Google Scholar 

  • Fenton O, Ohuallachain D (2012) Agricultural nutrient surplus as potential input sources to grow third generation biomass (microalgae): a review. Algal Res 1:49–56

    Article  Google Scholar 

  • Gao MC, She ZL, Jin CJ (2007) Performance evaluation of a mesophilic (37 c) upflow anaerobic sludge blanket reactor treating distillers grains wastewater. J Hazard Mater 141:808–813

    Article  Google Scholar 

  • Golueke CG, Oswald WJ (1959) Biological conversion of light energy to the chemical energy of methane. Appl Microbiol 7(4):219–227

    Google Scholar 

  • Golueke CG, Oswald WJ (1963) Power from solar energy via algae produced methane. Sol Energy 7(3):86–92

    Article  Google Scholar 

  • Golueke CG, Oswald WJ, Gotaas HB (1957) Anaerobic digestion of algae. Appl Microbiol 5(1):47–55

    Google Scholar 

  • Golueke CG, Oswald WJ, Gee HK (1964) Harvesting and processing sewage-grown planktonic algae, vol 64–68. University of California, Berkeley

    Google Scholar 

  • Gonzalez-Fernandez C, Molinuevo-Salces B, Garcia-Gonzalez MC (2011) Evaluation of anaerobic codigestion of microbial biomass and swine manure via response surface methodology. Appl Energy 88:3448–3453

    Article  Google Scholar 

  • Gonzalez-Fernandez C, Sialve B, Bernet N, Steyer J (2012a) Comparison of ultrasound and thermal pretreatment of Scenedesmus biomass on methane production. Bioresour Technol 110:610–616

    Article  Google Scholar 

  • Gonzalez-Fernandez C, Sialve B, Bernet N, Steyer JP (2012b) Impact of microalage characteristics on their conversion to biofuel. Part 2: Focus on biomethane production. Biofuels Bioprod Biorefin 6:205–218

    Article  Google Scholar 

  • Gonzalez-Fernandez C, Sialve B, Bernet N, Steyer JP (2012c) Thermal pretreatment to improve methane production of Scenedesmus biomass. Biomass Bioenergy 40:105–111

    Article  Google Scholar 

  • Goodwin JAS, Finlayson JM, Low EW (2001) A further study of the anaerobic biotreatment of malt whiskey distillery pot ale using a USAB system. Bioresour Technol 78:155–160

    Article  Google Scholar 

  • Green FB, Bernstone L, Lundquist TJ, Muir J, Tresan RB, Oswald WJ (1995a) Methane fermentation, submerged gas collection, and the fate of carbon in advanced integrated wastewater pond system. Water Sci Technol 31(12):55–65

    Article  Google Scholar 

  • Green FB, Lundquist TJ, Oswald WJ (1995b) Energetics of advanced integrated wastewater pond systems. Water Sci Technol 31(12):9–20

    Article  Google Scholar 

  • Haridas A, Suresh S, Chitra KR, Manilal VB (2005) The buoyant filter bioreactor: a high rate anaerobic reactor for complex wastewater—process dynamics with dairy effluent. Water Res 39(6):993–1004

    Google Scholar 

  • Harun R, Singh M, Forde GM, Danquah MK (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sustain Energy Rev 14:1037–1047

    Article  Google Scholar 

  • Inglesby AE, Fisher AC (2012) Enhanced methane yields from anaerobic digestion of Arthrospira maxima biomass in an advanced flow-through reactor with an integrated recirculation loop microbial fuel cell. Energy Environ Sci 5:7996–8006

    Article  Google Scholar 

  • Kalyuzhnyi S, Estrada De Los Santos L, Rodriguez Martinez J (1998) Anaerobic treatment of raw and preclarified potato maize wastewaters in a UASB reactor. Bioenergy Biofuels 66:195–199

    Google Scholar 

  • Kayhanian M (1994) Performance of a high solids anaerobic digestion process under various ammonia concentrations. J Tech Biotechnol 59(4):349–352

    Article  Google Scholar 

  • Kayhanian M (1999) Ammonia inhibition in high-solids biogasification, an overview and particle solutions. Environ Technol 20:355–365

    Article  Google Scholar 

  • Keyser M, Witthuhn RC, Lamprrecht C, Coetzee MPA, Britz TJ (2006) PCR-based DGGE fingerprinting and identification of methanogens detected in three different types of USAB granules. Syst Appl Microbiol 29:77–84

    Article  Google Scholar 

  • Krishnan V, Ahmad D, Endut EM (2006) Effect of coagulation on palm oil mill effluent and subsequent treatment of coagulated sludge by anaerobic digestion. J Chem Technol Biotechnol 81:1652–1660

    Article  Google Scholar 

  • Lakaniemi A, Hulatt C, Thomas D, Tuovinen O, Puhakka J (2011) Biogenic hydrogen and methane production from Chlorella vulgaris and Dunaliella tertiolecta biomass. Biotechnol Biofuels 4:34

    Article  Google Scholar 

  • Lee AK, Lewis D, Ashman PJ (2012) Disruption of microalgal cells for the extraction of lipids for biofuels: process and specific energy requirements. Biomass Bioenergy 46:89–101

    Article  Google Scholar 

  • Lee AK, Lewis D, Ashman PJ (2013) Force and energy requirements for microalgal cell disruption: an atomic force microscope evaluation. Bioresour Technol 128:199–206

    Article  Google Scholar 

  • Lourenco SO, Barbarino E (1998) Distribution of intracellular nitrogen in marine macroalgae: basis for the calculation of specific nitrogen-to-protein conversion factors. J Phycol 34:798–811

    Article  Google Scholar 

  • Lu F, Shao L, He P (2013) Bacterial bioaugmentation for improving methane and hydrogen production from microalgae. Biotechnol Biofuels 6(1):92

    Article  Google Scholar 

  • Lyovo GD, Du G, Chen J (2010) Sustainable bioenergy bioprocessing: biomethane production, digestate as biofertiliser and as supplemental feed in algae cultivation to promote algae biofuel production. J Microb Biochem Technol 2(4):100–106

    Article  Google Scholar 

  • McCarty PL (1964) Anaerobic waste treatment fundamentals: part 3. Public Works 9–12:91–94

    Google Scholar 

  • Molina GE, Belarbi EH, Fernandez FG, Robles MA, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process operations and economics. Biotechnol Adv 20:491–515

    Article  Google Scholar 

  • Mussgnug JH, Klassen V, Schluter A, Kruse O (2010) Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol 150:51–56

    Article  Google Scholar 

  • Oswald WJ (1976) Gas production from microalgae. Clean Fuels Biomass Wastes 3:311–324

    Google Scholar 

  • Oswald WJ, Green FB, Lundquist TJ (1994) Performance of methane fermentation pits in advanced integrated waste-water pond systems. Water Sci Technol 30(12):287

    Google Scholar 

  • Park S, Li Y (2012) Evaluation of methane production and macronutrient degradation in the anaerobic co-digestion of algae residue and lipid waste. Bioresour Technol 111:42–48

    Article  Google Scholar 

  • Parkin GF, Owen WF (1986) Fundamentals of anaerobic digestion of wastewater sludges. J Environ Eng 112:867–920

    Google Scholar 

  • Patil SS, Kumar MS, Ball AS (2010a) Microbial community dynamics in anaerobic bioreactors and algal tanks treating piggery wastewater. Environ Biotechnol 87:353–363

    Article  Google Scholar 

  • Patil SS, Ward AJ, Kumar MS, Ball AS (2010b) Utilising bacterial communities associated with digested piggery effluent as a primary food source for the batch culture on Moina australiensis. Bioresour Technol 101:3371–3378

    Article  Google Scholar 

  • Polakovicova G, Kusnir P, Nagyova S, Mikulec J (2012) Process integration of algae production and anaerobic digestion. Chem Eng Trans 29:1129–1134

    Google Scholar 

  • Pragya N, Pandey KK, Sahoo PK (2013) A review on harvesting, oil extraction and biofuels production technologies: a review. Renew Sustain Energy Rev 24:159–171

    Article  Google Scholar 

  • Ramamoorthy S, Sulochana N (1989) Enhancement of biogas production using algae. Curr Sci 58(11):646–647

    Google Scholar 

  • Ras M, Lardon L, Bruno S, Bernet N, Steyer J (2010) Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris. Bioresour Technol 102(1):200–2006

    Article  Google Scholar 

  • Rui X, Pay E, Tianrong G, Fang YY, Wudi Z (2007) The potential of blue-green algae for producing methane in biogas fermentation. In: Goswami DY, Yuwen Z (eds) Proceedings of ISESS solar world congress 2007: solar energy and human settlement, China, pp 2427–2429. Tsingua University Press, Beijing

    Google Scholar 

  • Salerno M, Nurdogan Y, Lundquist TJ (2009) Biogas production from algae biomass harvested at wastewater treatment ponds. Paper presented at the bioenergy engineering conference, Washington

    Google Scholar 

  • Samson R, Leduy A (1983) Influence of mechanical and thermochemical pretreatments on anaerobic-digestion of Spirulina-maxima algal biomass. Biotechnol Lett 5(10):671–676

    Article  Google Scholar 

  • Samson R, Leduy A (1986) Detailed study of anaerobic-digestion of Spirulina-maxima algal biomass. Biotechnol Bioeng 28(7):1014–1023

    Article  Google Scholar 

  • Sanchez-Hernandez EP, Trvieso-Cordoba L (1993) Anaerobic digestion of Chlorella vulgaris for energy production. Resour Conserv Recycl 9:127–132

    Article  Google Scholar 

  • Saxena VK, Tandon SM, Singh KK (1984) Anaerobic digestion of green filamentous algae and water hyacinth for methane production. Nat Acad Sci Lett 7(9):283–284

    Google Scholar 

  • Shin SG, Han G, Lim J, Lee C, Hwang S (2010) A comprehensive microbial insight into two-stage anaerobic digestion of food waste-recycling wastewater. Water Res 44:4838–4849

    Article  Google Scholar 

  • Shouquan W, Qun Y, Hengfeng M, Wenquan R (2009) Effect of inoculum to substrate ratios on methane production in mixed anaerobic digestion of pig manure and blue green algae. Trans CSAE 25(5):172–176

    Google Scholar 

  • Shuchuan P, Chenghu H, Jin W, Tianhu C, Xiaomeng L, Zhengbo Y (2012) Performance of anaerobic co-digestion of corn straw and algae biomass from lake Chaohu Chinese Society of Agriculture. Trans Chin Soc Agri Eng 28(15):173–178

    Google Scholar 

  • Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgae biodiesel sustainable. Biotechnol Adv 27:409–416

    Article  Google Scholar 

  • Skilman LC, Bajsa O, Ho L, Santhanam B, Kumar MS, Ho G (2009) Influence of high gas production during thermophilic anaerobic digestion in pilot-scale and lab-scale reactors on survival of the thermotolerant pathogens Clostridium perfringens and Campylobacter jejuni in piggery wastewater. Water Res 43:3281–3291

    Article  Google Scholar 

  • Stephans E, Ross IL, Hankamer B (2013) Expanding the microalgal industry—continuing controversy or compelling case? Chem Biol 17:444–452

    Google Scholar 

  • Stephans E et al (2010) Future prospect of microalgal biofuel production systems. Trends Plant Sci 15(10):554–564

    Article  Google Scholar 

  • Supaphol S, Jenkins SN, Intomo P, Waite IS, O’Donnell AG (2011) Microbial community dynamics in mesophilic anaerobic co-digestion of mixed waste. Bioresour Technol 102(5):4021–4027

    Article  Google Scholar 

  • Thiel PG (1969) The effect of methane analogues on methanogenesis in anaerobic digestion. Water Res 3:215–223

    Article  Google Scholar 

  • Vaccari DA (2009) Phosphorus: a looming crisis. Sci Am 300(6):54–59

    Article  Google Scholar 

  • Varel VH, Chen TH, Hashimoto AG (1988) Thermophilic and mesophilic methane production from anaerobic degradation of the Cyanobacterium Spirulina maxima. Res Conserv Recycl 1:19–26

    Article  Google Scholar 

  • Vergara-Fernandez A, Vargas G, Alarcon N, Velasco A (2008) Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system. Biomass Bioenergy 32:338–344

    Article  Google Scholar 

  • Ward AJ, Lewis D (2015) Pre-treatment options for halophytic microalgae and associated methane production. Bioresour Technol 177:410–413

    Article  Google Scholar 

  • Ward AJ, Lewis D, Green FB (2014) Anaereobic digestion of algae biomass: a review. Algal Res 5:204–214

    Article  Google Scholar 

  • Ward AJ, Lewis D, Ball AS (2015) Halophytic microalgae as a feedstock for anaerobic digestion. Algal Res 7:16–23

    Article  Google Scholar 

  • Yang Z, Guo R, Xu X, Fan X, Luo S (2011) Hydrogen and methane production from lipid extracted microbial biomass residues. Int J Hydrogen Energy 36:3465–3470

    Article  Google Scholar 

  • Yen HW, Brune DE (2007) Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresour Technol 98:130–134

    Article  Google Scholar 

  • Yu H, Samani Z, Hanson A, Smith G (2002) Energy recovery from grass using two-phase anaerobic digestion. Waste Manage 22:1–5

    Article  MATH  Google Scholar 

  • Zamalloa C, Vrieze JD, Boon N, Verstraete W (2012) Anaerobic digestibility of marine microalgae Phaeodactylum tricornutum in a lab-scale anaerobic membrane bioreactor. Bioenergy Biofuels 93:859–869

    Google Scholar 

  • Zeng SJ, Yuan XZ, Shi XS, Qiu YL (2010) Effect of inoculum/substrate ratio on methane yield and orthophosphate release from anaerobic digestion of Microcystis spp. J Hazard Mater 178(1–3):89–93

    Article  Google Scholar 

  • Zhang J, Zhang Y, Quan X (2012) Electricity assisted anaerobic treatment of salinity wastewater and its effects on microbial communities. Water Res 46:3535–3543

    Article  Google Scholar 

  • Zhou Q, Yan S, Song W, Liu J, Han S (2009) Influences of suspended carrier on anaerobic digestion process of blue algae. Jiangsu Nong Ye Xue Bao (J Agri Sci) 25(6):1305–1308

    Google Scholar 

  • Ziganshin AM, Schmidt T, Scholwin F, Il’inskaya ON, Harms H, Kleinsteuber S (2011) Bacteria and archaea involved in anaerobic digestion of distillers grains with solubles. Appl Microbiol Biotechnol 89(6):2039–2052

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew James Ward .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ward, A.J. (2015). The Anaerobic Digestion of Microalgae Feedstock, “Life-Cycle Environmental Impacts of Biofuels and Co-products”. In: Moheimani, N., McHenry, M., de Boer, K., Bahri, P. (eds) Biomass and Biofuels from Microalgae. Biofuel and Biorefinery Technologies, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-16640-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16640-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16639-1

  • Online ISBN: 978-3-319-16640-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics