Skip to main content

Industrial-scale Microalgae Pond Primary Dewatering Chemistry for Energy-efficient Autoflocculation

  • Chapter
  • First Online:
Biomass and Biofuels from Microalgae

Part of the book series: Biofuel and Biorefinery Technologies ((BBT,volume 2))

  • 3131 Accesses

Abstract

Industrial-scale microalgae production will likely require large energy-intensive technologies for both culture and biomass recovery; energy-efficient and cost-effective microalgae dewatering and water management are major challenges. Primary dewatering is typically achieved through flocculation followed by separation via settling or flotation. Flocculants are relatively expensive, and their presence can limit the reuse of de-oiled flocculated microalgae. Natural flocculation of microalgae—autoflocculation—occurs in response to changes in pH and water hardness and, if controlled, might lead to less-expensive “flocculant-free” dewatering. A better understanding of autoflocculation should also prompt higher yields by preventing unwanted autoflocculation. Autoflocculation is driven by double-layer coordination between microalgae, Ca+2 and Mg+2, and/or mineral surface precipitates of calcite, Mg(OH)2, and hydroxyapatite that form primarily at pH > 8. Combining surface complexation models that describe the interface of microalgae:water, calcite:water, Mg(OH)2:water, and hydroxyapatite:water allows optimal autoflocculation conditions—for example pH, Mg, Ca, and P levels—to be identified for a given culture medium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ayoub GM, Lee S-I, Koopman B (1986) Seawater induced algal flocculation. Water Res 20:1265–1271

    Article  Google Scholar 

  • Bernhardt H, Clasen J (1991) Flocculation of micro-organisms. J Water Supply Res Technol-AQUA 40:76–87

    Google Scholar 

  • Biller P, Ross AB (2011) Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresour Technol 102:215–225. doi:10.1016/j.biortech.2010.06.028

    Article  Google Scholar 

  • Borowitzka M (1992) Algal biotechnology products and processes—matching science and economics. J Appl Phycol 4:267–279

    Article  Google Scholar 

  • Borowitzka M (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321

    Article  Google Scholar 

  • Borowitzka MA, Moheimani NR (2010) Sustainable biofuels from algae. Mitig Adapt Strat Glob Change. doi:10.1007/s11027-010-9271-9

    Google Scholar 

  • Brady PV, Pohl PI, Hewson JC (2014) A coordination chemistry model of algal autoflocculation. Algal Res 5:226−230. doi:10.1016/j.algal.2014.02.004

  • Bratby J (2008) Coagulation and flocculation in water and wastewater treatment. International Water Association (IWA)

    Google Scholar 

  • Charcosset C (2009) A review of membrane processes and renewable energies for desalination. Desalination 245:214–231

    Article  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  Google Scholar 

  • Clarens AF, Resurreccion EP, White MA, Colosi LM (2010) Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol 44:1813–1819

    Article  Google Scholar 

  • de Boer K, Moheimani N, Borowitzka M, Bahri P (2012) Extraction and conversion pathways for microalgae to biodiesel: a review focused on energy consumption. J Appl Phycol:1–18. doi:10.1007/s10811-012-9835-z

  • Duan JM, Gregory J (2003) Coagulation by hydrolysing metal salts. Adv Colloid Interface Sci 100:475–502

    Article  Google Scholar 

  • Ensyn (2011) The RTP pyrolysis pathway, maximizing value of biomass residues. http://www.ensyn.com/wp-content/uploads/rich-widget/file/EC%20Corp%20PPT%20April%202011NEW.pdf. Accessed 30 Apr 2013

  • Evodos (2011) Totally, dewatering algae. Alive

    Google Scholar 

  • Folkman Y, Wachs AM (1973) Removal of algae from stabilization pond effluents by lime treatment. Water Res 7:419–435

    Article  Google Scholar 

  • Fon Sing S, Isdepsky A, Borowitzka M, Moheimani NR (2011) Production of biofuels from microalgae. Mitig Adapt Strat Glob Change. doi: 10.1007/s11027-011-9294-x

  • Gjaldbæk JK (1924) Über das potential zwischen der 0.1 n und 3.5 n kalomelelektrode. Mathematisk-fysiske meddelelser, 5(9) Kongelige Danske Videnskabernes Selskab, Copenhagen, Denmark

    Google Scholar 

  • Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. Appl Microbiol Biotechnol 21:493–507

    Google Scholar 

  • Hadjoudja S, Deluchat V, Baudu M (2010) Cell surface characterisation of Microcystis aeruginosa and Chlorella vulgaris. J Colloid Interface Sci 342:293–299

    Article  Google Scholar 

  • Henderson RK, Sharp E, Jarvis P, Parsons SA, Jefferson B (2006) Identifying the linkage between particle characteristics and understanding coagulation performance. Water Sci Technol 6:31–38

    Google Scholar 

  • Henderson R, Parsons SA, Jefferson B (2008) The impact of algal properties and pre-oxidation on solid-liquid separation of algae. Water Res 42:1827–1845

    Article  Google Scholar 

  • Jackson GA, Burd AB (1998) Aggregation in the marine environment. Environ Sci Tech 32:2805–2814

    Article  Google Scholar 

  • Knuckey RM, Brown MR, Robert R, Frampton DMF (2006) Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds. Aquacult Eng 35:300–313

    Article  Google Scholar 

  • Kunjapur AM, Eldridge RB (2010) Photobioreactor design for commercial biofuel production from microalgae. Ind Eng Chem Res 49:3516–3526

    Article  Google Scholar 

  • Lee Y-K (2001) Microalgal mass culture systems and methods: their limitation and potential. J Appl Phycol 13:307–315

    Article  Google Scholar 

  • Li F (2012) Modeling and control of algae harvesting, dewatering, and drying (HDD) systems. Case Western Reserve University, Cleveland

    Google Scholar 

  • McHenry MP (2010) Microalgal bioenergy, biosequestration, and water use efficiency for remote resource industries in Western Australia. In: Harris AM (ed) Clean energy: resources, production and developments. Nova Science Publishers, Hauppauge, New York

    Google Scholar 

  • McHenry MP (2013) Hybrid microalgal biofuel, desalination, and solution mining systems: increased industrial waste energy, carbon, and water use efficiencies. Mitig Adapt Strat Glob Change 18:159–167

    Article  Google Scholar 

  • Moheimani NR, McHenry MP (2013) Developments of five selected microalgae companies developing “closed” bioreactor biofuel production systems. Int J Innov Sustain Dev 7:367–386

    Article  Google Scholar 

  • Moheimani NR, Lewis D, Borowitzka MA, Pahl S (2011) Harvesting, thickening and dewatering microalgae. In: Carioca JOB (ed) International microalgae and biofuels workshop, Fortaleza, Brasil, p 227

    Google Scholar 

  • Moheimani NR, McHenry MP, de Boer K (2013) The forefront of low-cost and high-volume open microalgae biofuel production. In: Gupta VK, Schmoll M, Maki M, Tuohy M, Antonio Mazutti M (eds) Applications of microbial engineering. Science Publishers, Enfield, New Hampshire

    Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (Version 2)—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations

    Google Scholar 

  • Pieterse AJH, Cloot A (1997) Algal cells and coagulation, flocculation and sedimentation processes. Water Sci Technol 36:111–118

    Google Scholar 

  • Pokrovsky OS, Schott J (2004) Experimental study of brucite dissolution and precipitation in aqueous solutions: surface speciation and chemical affinity control. Geochem Cosmochim Acta 68:31–45

    Article  Google Scholar 

  • Pytkowicz RM, Atlas E (1975) Buffer intensity of seawater. Limnol Oceanogr 20:222–229

    Article  Google Scholar 

  • Regalbuto JR (2011) The sea change in US biofuels’ funding: from cellulosic ethanol to green gasoline. Biofuels Bioprod Biorefin 5:495–504

    Article  Google Scholar 

  • Schlesinger A, Eisenstadt DB-G, A, Carmely H, Einbinder S, Gressel J (2012) Inexpensive non-toxic flocculation of microalgae contradicts theories; overcoming a major hurdle to bulk algal production. Biotechnol Adv 30:1023–1030

    Google Scholar 

  • Smith BT, Davis RH (2012) Sedimentation of algae flocculated using naturally-available, magnesium-based flocculants. Algal Res 1:32–39

    Article  Google Scholar 

  • Solix Biofuels (2011a) Coyote gulch demonstration plant. http://www.solixbiofuels.com/content/products/demonstration-facility. Accessed 7 May 2012

  • Solix Biofuels (2011b) Inclusions & options for the Lumian™ AGS4000. http://www.solixbiofuels.com/content/products/inclusions-options. Accessed 7 May 2012

  • Solix Biofuels (2011c) The Lumian™ AGS4000: a high productivity algae growth system. http://www.solixbiofuels.com/content/products/lumian-ags4000. Accessed 7 May 2012

  • Sukenik A, Shelef G (1984) Algal autoflocculation—verification and proposed mechanism. Biotechnol Bioeng 26:142–147

    Article  Google Scholar 

  • Vandamme D, Foubert I, Muylaert K (2013) Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends Biotechnol 31:233–239

    Article  Google Scholar 

  • Vasudevan PT, Briggs M (2008) Biodiesel production—current state of the art and challenges. J Ind Microbiol Biotechnol 35:421–430

    Article  Google Scholar 

  • Wyman CE, Goodman BJ (1993) Biotechnology for production of fuels, chemicals, and materials from biomass. Appl Biochem Biotechnol 39:41–59

    Article  Google Scholar 

  • Xiong W, Li X, Xiang J, Wu Q (2008) High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl Microbiol Biotechnol 78:29–36

    Article  Google Scholar 

Download references

Acknowledgements

Funding from the Sandia National Laboratories LDRD Office is gratefully acknowledged by PVB. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick V. Brady .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Brady, P.V., McHenry, M.P., Carolina Cuello, M., Moheimani, N.R. (2015). Industrial-scale Microalgae Pond Primary Dewatering Chemistry for Energy-efficient Autoflocculation. In: Moheimani, N., McHenry, M., de Boer, K., Bahri, P. (eds) Biomass and Biofuels from Microalgae. Biofuel and Biorefinery Technologies, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-16640-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16640-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16639-1

  • Online ISBN: 978-3-319-16640-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics