Skip to main content

Shock Structure and Temperature Overshoot in Macroscopic Multi-temperature Model of Binary Mixtures

  • Conference paper
  • First Online:
From Particle Systems to Partial Differential Equations II

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 129))

Abstract

The present study deals with the shock wave profiles in the macroscopic multi-temperature model of binary gaseous mixtures. For that purpose we adopt the hyperbolic model developed within the framework of extended thermodynamics. It is assumed that the mass difference between the constituents has the most prominent influence on the shock structure. Simplicity of the model enables systematic analysis of the results, using a large set of values for parameters, with special regard to the temperature overshoot (TO) of the heavier constituent. We found that TO varies non-monotonically with mass ratio of the constituents. In the context of the previous research, the influence of the different types of dissipation on the shock structure is considered by extending the original hyperbolic system with diffusion terms. It has been observed that TO continued to exist even in the presence of additional dissipative mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abe, K., Oguchi, H.: Shock wave structures in binary gas mixtures with regard to temperature overshoot. Phys. Fluids 17, 1333–1334 (1974)

    Article  Google Scholar 

  2. Abe, T., Oguchi, H.: A hierarchy kinetic model and its applications. Prog. Astronaut. Aeronaut. 51, 781–793 (1977)

    Google Scholar 

  3. Bird, G.: The structure of normal shock waves in a binary gas mixture. J. Fluid Mech. 31(4), 657–668 (1968)

    Article  Google Scholar 

  4. Bird, G.: Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Carendon Press, Oxford (1994)

    Google Scholar 

  5. Bisi, M., Martalò, G., Spiga, G.: Multi-temperature Euler hydrodynamics for a reacting gas from a kinetic approach to rarefied mixtures with resonant collisions. EPL (Europhys. Lett.) 95(5), 55002 (2011)

    Google Scholar 

  6. Bisi, M., Martalò, G., Spiga, G.: Shock wave structure of multi-temperature euler equations from kinetic theory for a binary mixture. Acta Applicandae Mathematicae 1–11 (2014)

    Google Scholar 

  7. Bose, T.: High Temperature Gas Dynamics. Springer, Berlin (2004)

    Google Scholar 

  8. Chapman, S., Cowling, T.G.: The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction and diffusion in gases. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  9. Cowling, T.: VI. The influence of diffusion on the propagation of shock waves. Philos. Mag. 33(216), 61–67 (1942)

    Article  Google Scholar 

  10. D’yakov, S.: Shock waves in binary mixtures. Zh. Eksperim. i Teor. Fiz 27, 283–287 (1954)

    MATH  MathSciNet  Google Scholar 

  11. Elizarova, T., Graur, I., Lengrand, J.C.: Macroscopic Equations for a Binary Gas Mixture. Technical report, DTIC Document (2000)

    Google Scholar 

  12. Fernandez-Feria, R., De La Mora Fernandez, J.: Shock wave structure in gas mixtures with large mass disparity. J. Fluid Mech. 179, 21–40 (1987)

    Article  MATH  Google Scholar 

  13. Gilbarg, D., Paolucci, D.: The structure of shock waves in the continuum theory of fluids. J. Rat. Mech. Anal. 2(617), 220 (1953)

    MathSciNet  Google Scholar 

  14. Goldman, E., Sirovich, L.: The structure of shock-waves in gas mixtures. J. Fluid Mech. 35(3), 575–597 (1969)

    Article  MATH  Google Scholar 

  15. Guckenheimer, J., Holmes, P.: Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, vol. 42. Springer, New York (1983)

    Google Scholar 

  16. Harnet, L.N., Muntz, E.P.: Experimental investigation of normal shock wave velocity distribution functions in mixtures of argon and helium. Phys. Fluids 10, 565–572 (1972)

    Article  Google Scholar 

  17. Harris Sr, W.L., Bienkowski, G.K.: Structure of normal shock waves in gas mixtures. Phys. Fluids 14, 2652 (1971)

    Article  MATH  Google Scholar 

  18. Kosuge, S., Aoki, K., Takata, S.: Shock-wave structure for a binary gas mixture: finite-difference analysis of the Boltzmann equation for hard sphere molecules. Eur. J. Mech. B Fluids 17, 87–126 (2001)

    Google Scholar 

  19. Madjarević, D., Simić, S.: Shock structure in helium-argon mixturea comparison of hyperbolic multi-temperature model with experiment. EPL (Europhys. Lett.) 102(4), 44002 (2013)

    Google Scholar 

  20. Müller, I.: A thermodynamic theory of mixtures of fluids. Arch. Ration. Mech. Anal. 28(1), 1–39 (1968)

    Article  MATH  Google Scholar 

  21. Müller, I., Ruggeri, T.: Rational Extended Thermodynamics. Springer, New York (1998)

    Book  MATH  Google Scholar 

  22. Raines, A.: Study of a shock wave structure in gas mixtures on the basis of the Boltzmann equation. Eur. J. Mech. B Fluids 21(5), 599–610 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Raines, A.: Numerical investigation of the temperature macroparameters in a shock wave in a binary gas mixture using the kinetic Boltzmann equation. Fluid Dyn. 38(1), 132–142 (2003)

    Article  MathSciNet  Google Scholar 

  24. Ruggeri, T., Simić, S.: On the hyperbolic system of a mixture of eulerian fluids: a comparison between single-and multi-temperature models. Math. Methods Appl. Sci. 30(7), 827–849 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Ruggeri, T., Simić, S.: Average temperature and maxwellian iteration in multitemperature mixtures of fluids. Phys. Rev. E 80, 026317 (2009)

    Google Scholar 

  26. Sherman, F.S.: Shock-wave structure in binary mixtures of chemically inert perfect gases. J. Fluid Mech. 8(3), 465–480 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  27. Simić, S.: Shock structure in continuum models of gas dynamics: stability and bifurcation analysis. Nonlinearity 22, 1337 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. Struchtrup, H.: Macroscopic transport equations for rarefied gas flows. Springer, Berlin (2005)

    Google Scholar 

  29. Torrilhon, M., Struchtrup, H.: Regularized 13-moment equations: shock structure calculations and comparison to Burnett models. J. Fluid Mech. 513, 171–198 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  30. Vincenti, W., Krüger, C.: Introduction to physical gas dynamics. Wiley, New York (1965)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education and Science, Republic of Serbia, through the project Mechanics of nonlinear and dissipative systems—contemporary models, analysis and applications, Project No. ON174016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damir Madjarević .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Madjarević, D. (2015). Shock Structure and Temperature Overshoot in Macroscopic Multi-temperature Model of Binary Mixtures. In: Gonçalves, P., Soares, A. (eds) From Particle Systems to Partial Differential Equations II. Springer Proceedings in Mathematics & Statistics, vol 129. Springer, Cham. https://doi.org/10.1007/978-3-319-16637-7_9

Download citation

Publish with us

Policies and ethics