Skip to main content

Conditioned Stochastic Particle Systems and Integrable Quantum Spin Systems

  • Conference paper
  • First Online:
From Particle Systems to Partial Differential Equations II

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 129))

Abstract

We consider from a microscopic perspective large deviation properties of several stochastic interacting particle systems, using their mapping to integrable quantum spin systems. A brief review of recent work is given and several new results are presented: (i) For the general disordered symmetric exclusion process (SEP) on some finite lattice conditioned on no jumps into some absorbing sublattice and with initial Bernoulli product measure with density \(\rho \) we prove that the probability \(S_{\rho (t)}\) of no absorption event up to microscopic time \(t\) can be expressed in terms of the generating function for the particle number of a SEP with particle injection and empty initial lattice. Specifically, for the symmetric simple exclusion process on \({\mathbb Z}\) conditioned on no jumps into the origin we obtain the explicit first and second order expansion in \(\rho \) of \(S_{\rho (t)}\) and also to first order in \(\rho \) the optimal microscopic density profile under this conditioning. (ii) For the disordered ASEP on the finite torus conditioned on a very large current we show that the effective dynamics that optimally realizes this rare event does not depend on the disorder, except for the time scale. (iii) For annihilating and coalescing random walkers we obtain the generating function of the number of annihilated particles up to time \(t\), which turns out to exhibit some universal features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    To clarify our terminology: The symmetric simple exclusion process (SSEP) has nearest neighbour jumps only on a regular lattice such as \({\mathbb Z}^d\), whereas the general symmetric exclusion process (SEP) can have jumps between any pair of nodes on any graph. This terminology comes from physical intuition and is not mathematically precise, since the set of links on which jumps have non-zero rate may just as well be used to define an underlying graph on which one then would again have only nearest neighbour jumps so that the process could also be called SSEP. However, we will only consider the SSEP on \({\mathbb Z}\) with bond-independent rates. This removes any ambiguity of notation. Moreover, we shall always speak of sites and lattices rather than of nodes and graphs.

References

  1. Alcaraz, F.C., Rittenberg, V.: Reaction-diffusion processes as physical realizations of Hecke Algebras. Phys. Lett. B 314(3), 377–380 (1993)

    Article  Google Scholar 

  2. Appert, C., Derrida, B., Lecomte, V., Van Wijland, F.: Universal cumulants of the current in diffusive systems on a ring. Phys. Rev. E 78, 021122 (2008)

    Article  Google Scholar 

  3. Arratia, R.: Limiting point processes for rescalings of coalescing and annihilating random walks on \(\mathbb{Z}^d\). Ann. Probab. 9(6), 909–936 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ayyer, A., Mallick, K.: Exact results for an asymmetric annihilation process with open boundaries. J. Phys. A: Math. Theor. 43(4), 045003 (2010)

    Article  MathSciNet  Google Scholar 

  5. Bahadoran, C.: Blockage hydrodynamics of one-dimensional driven conservative systems. Ann. Probab. 32(1B), 805–854 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Belitsky, V., Schütz, G.M.: Diffusion and coalescence of shocks in the partially asymmetric exclusion process. Electron. J. Prob. 7, Paper No. 11, 1–21 (2002)

    Google Scholar 

  7. Belitsky, V., Schütz, G.M.: Microscopic structure of shocks and antishocks in the ASEP conditioned on low current. J. Stat. Phys. 152, 93–111 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ben Avraham, D.: Complete exact solution of diffusion-limited coalescence, \(A+A -{\>} A\). Phys. Rev. Lett. 81, 4756–4759 (1998)

    Google Scholar 

  9. Bertini, L., De Sole, A., Gabrielli, D., Jona Lasinio, G., Landim, C.: Macroscopic fluctuation theory for stationary non-equilibrium states. J. Stat. Phys. 107, 635–675 (2002)

    Google Scholar 

  10. Bertini, L., De Sole, A., Gabrielli, D., Jona Lasinio, G., Landim, C.: Macroscopic fluctuation theory. arXiv:1404.6466v1 [cond-mat.stat-mech](2014)

  11. Blumen, A., Klafter, J., Zumofen, G.: Target annihilation by random walkers. Phys. Rev. B 30(9), 5379–5382 (1984)

    Article  Google Scholar 

  12. Bodineau, T., Derrida, B.: Distribution of current in non-equilibrium diffusive systems and phase transitions. Phys. Rev. E 72, 066110 (2005)

    Article  MathSciNet  Google Scholar 

  13. Bodineau, T., Lagouge, M.: Current large deviations in a driven dissipative model. J. Stat. Phys. 139(2), 201–219 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Bodineau, T., Bahadoran, C.: Properties and conjectures for the flux of TASEP with site disorder. Braz. J. Prob. Stat. (2014) (To Appear)

    Google Scholar 

  15. Borodin, A., Corwin, I., Sasamoto, T.: From duality to determinants for Q-TASEP and ASEP. Ann. Probab. 42(6), 2314–2382 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  16. Bramson M., Griffeath, D.: Clustering and dispersion rates for some interacting particle systems on \(\mathbb{Z}\). Ann. Probab. 8(2), 183–213 (1980)

    Google Scholar 

  17. Burlatsky, S.F., Ovchinnikov, A.A.: Effect of reactant-fluctuation density on the kinetics of recombination, multiplication, and trapping processes. Sov. Phys. JETP 65, 908–917 (1987)

    Google Scholar 

  18. Burlatsky, S.F., Moreau, M., Oshanin, G., Blumen, A.: Comment on “pair and triple correlations in diffusion-limited \(A + B \rightarrow B\) reactions”. Phys. Rev. Lett. 75, 585 (1995)

    Article  Google Scholar 

  19. Castro-Alvaredo, O., Chen, Y., Doyon, B., Marianne Hoogeveen, M.: Thermodynamic Bethe ansatz for non-equilibrium steady states: exact energy current and fluctuations in integrable QFT. J. Stat. Mech. P03011 (2014)

    Google Scholar 

  20. Chetrite, R., Touchette, H.: Nonequilibrium Markov processes conditioned on large deviations. Ann. Henri Poincaré 1–51 (2014). doi:10.1007/s00023-014-0375-8

  21. Colomo, F., Isergin, A.G., Korepin, V.E., Tognetti, V.: Temperature correlation functions in the XX0 Heisenberg chain. Theor. Math. Phys. 94(1), 11–38 (1993)

    Article  Google Scholar 

  22. Derrida, B., Lebowitz, J.L.: Exact large deviation function in the asymmetric exclusion process. Phys. Rev. Lett. 80(2), 209–213 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  23. Derrida, B., Appert, C.: Universal large deviation function of the Kardar-Parisi-Zhang equation in one dimension. J. Stat. Phys. 94, 1–30 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  24. Derrida, B., Lebowitz, J.L., Speer, E.R.: Large deviation of the density profile in the steady state of the open symmetric simple exclusion process. J. Stat. Phys. 107, 599–634 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Espigares, C.P., Garrido, P.L., Hurtado, P.I.: Dynamical phase transition for current statistics in a simple driven diffusive system. Phys. Rev. E 87, 032115 (2013)

    Article  Google Scholar 

  26. Fisher, M.E.: Walks, walls, wetting, and melting. J. Stat. Phys. 34, 667–729 (1984)

    Article  MATH  Google Scholar 

  27. Giardinà, C., Kurchan, J., Redig, F., Vafayi, K.: Duality and hidden symmetries in interacting particle systems. J. Stat. Phys. 135, 25–55 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. Gwa, L.H., Spohn, H.: Bethe solution for the dynamical-scaling exponent of the noisy Burgers equation. Phys. Rev. A 46(2), 844–854 (1992)

    Article  Google Scholar 

  29. Ha, M., Timonen, J., den Nijs, M.: Queuing transitions in the asymmetric simple exclusion process. Phys. Rev. E 68, 056122 (2003)

    Article  Google Scholar 

  30. Harris, R.J., Schütz, G.M.: Fluctuation theorems for stochastic dynamics. J. Stat. Mech. P07020 (2007)

    Google Scholar 

  31. Harris, R.J., Popkov, V., Schütz, G.M.: Dynamics of instantaneous condensation in the ZRP conditioned on an atypical current. Entropy 15, 5065–5083 (2013)

    Article  Google Scholar 

  32. Harris, R.J., Schütz, G.M.: Fluctuation theorems for stochastic dynamics interacting particle systems. Markov Process Relat. Fields. 20, 3–44 (2014)

    MATH  Google Scholar 

  33. Henkel, M., Orlandini, E., Schütz, G.M.: Equivalences between stochastic systems. J. Phys. A: Math. Gen. 28, 6335–6344 (1995)

    Article  MATH  Google Scholar 

  34. Hurtado, P.I., Garrido, P.L.: Spontaneous symmetry breaking at the fluctuating level. Phys. Rev. Lett. 107, 180601 (2011)

    Article  Google Scholar 

  35. Imamura, T., Sasamoto, T.: Current moments of 1D ASEP by duality. J. Stat. Phys. 142(5), 919–930 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  36. Jack, R.L., Sollich, P.: Large deviations and ensembles of trajectories in stochastic models. Prog. Theor. Phys. Supp. 184, 304–317 (2010)

    Article  MATH  Google Scholar 

  37. Janowsky, S.A., Lebowitz, J.L.: Finite-size effects and shock fluctuations in the asymmetric simple-exclusion process. Phys. Rev. A 45(2), 618–625 (1992)

    Article  Google Scholar 

  38. Janowsky, S.A., Lebowitz, J.L.: Exact results for the asymmetric simple exclusion process with a blockage. J. Stat. Phys. 77, 35–51 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  39. Katori, M., Tanemura, H.: Complex Brownian motion representation of the Dyson model. Electron. Commun. Probab. 18(4), 1–16 (2013)

    MathSciNet  Google Scholar 

  40. Kim, D.: Bethe ansatz solution for crossover scaling functions of the asymmetric XXZ chain and the KPZ-type growth model. Phys. Rev. E 52, 3512–3524 (1995)

    Article  Google Scholar 

  41. Kolomeisky, A.B., Schütz, G.M., Kolomeisky, E.B., Straley, J.P.: Phase diagram of one-dimensional driven lattice gases with open boundaries. J. Phys. A: Math. Gen. 31(33), 6911–6919 (1998)

    Google Scholar 

  42. Krapivsky, P.L., Redner, S., Ben-Naim, E.: A kinetic view of statistical physics. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  43. Lebowitz, J.L., Spohn, H.: A Gallavotti-Cohen-Type symmetry in the large deviation functional for stochastic dynamics. J. Stat. Phys. 95, 333–365 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  44. Lecomte, V., Garrahan, J.P., Van Wijland, F.: Inactive dynamical phase of a symmetric exclusion process on a ring. J. Phys. A: Math. Theor. 45, 175001 (2012)

    Article  Google Scholar 

  45. Liggett, T.M.: Interacting Particle Systems. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  46. Liggett, T.M.: Stochastic Interacting Systems: Contact Voter and Exclusion Processes. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  47. Lloyd, P., Sudbury, A., Donnelly, P.: Quantum operators in classical probability theory: I. “Quantum spin” techniques and the exclusion model of diffusion. Stochast. Processes Appl. 61(2), 205–221 (1996)

    Google Scholar 

  48. Lushnikov, A.A.: Binary reaction \(1 + 1 \rightarrow 0\) in one dimension. Phys. Lett. A 120(3), 135–137 (1987)

    Article  MathSciNet  Google Scholar 

  49. Meerson, B., Vilenkin, A., Krapivsky, P.L.: Survival of a static target in a gas of diffusing particles with exclusion. Phys. Rev. E 90, 022120 (2014)

    Article  Google Scholar 

  50. Meerson, B., Redner, S.: Large fluctuations in diffusion-controlled absorption. J. Stat. Mech. P08008 (2014)

    Google Scholar 

  51. Mejía-Monasterio, C., Oshanin, G., Schehr, G.: First passages for a search by a swarm of independent random searchers. J. Stat. Mech. P06022 (2011)

    Google Scholar 

  52. Popkov, V., Simon, D., Schütz, G.M.: ASEP on a ring conditioned on enhanced flux. J. Stat. Mech. P10007 (2010)

    Google Scholar 

  53. Popkov, V., Schütz, G.M.: Transition probabilities and dynamic structure factor in the ASEP conditioned on strong flux. J. Stat. Phys. 142(3), 627–639 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  54. Popkov, V., Schütz, G.M.: Large deviation functions in a system of diffusing particles with creation and annihilation. Phys. Rev. E 84, 021131 (2011)

    Article  Google Scholar 

  55. Popkov, V., Schadschneider, A., Schmidt, J.: TASEP with open boundary conditions and slow bond. Preprint (2014)

    Google Scholar 

  56. Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I.: Integrals and Series, vol. 1. Gordon and Breach, New York (1986)

    Google Scholar 

  57. Rezakhanlou, F.: Hydrodynamic limit for attractive particle systems on \(\mathbb{Z}^d\). Commun. Math. Phys. 140, 417–448 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  58. Rogers, L.C.G., Williams, D.: Diffusions, markov processes, and martingales. In: Foundations, vol. 1. Wiley, New york (1994)

    Google Scholar 

  59. Santen, L., Appert, C.: The asymmetric exclusion process revisited: fluctuations and dynamics in the domain wall picture. J. Stat. Phys. 106(1–2), 187–199 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  60. Santos, J.E., Schütz, G.M.: Exact time-dependent correlation functions for the symmetric exclusion process with open boundary. Phys. Rev. E 64, 036107 (2001)

    Article  Google Scholar 

  61. Schütz, G.: Generalized Bethe ansatz solution of a one-dimensional asymmetric exclusion process on a ring with blockage. J. Stat. Phys. 71(3)-(4), 471–505 (1993)

    Google Scholar 

  62. Schütz, G., Sandow, S.: Non-abelian symmetries of stochastic processes: derivation of correlation functions for random vertex models and disordered interacting many-particle systems. Phys. Rev. E 49, 2726–2744 (1994)

    Article  Google Scholar 

  63. Schütz, G.M.: Diffusion-annihilation in the presence of a driving field. J. Phys. A: Math. Gen. 28(12), 3405–3415 (1995)

    Article  MATH  Google Scholar 

  64. Schütz, G.M.: Duality relations for the asymmetric exclusion process. J. Stat. Phys. 86(5/6), 1265–1287 (1997)

    Article  MATH  Google Scholar 

  65. Schütz, G.M.: Exactly solvable models for many-body systems far from equilibrium. In: Domb, C., Lebowitz, J. (eds.) Phase Transitions and Critical Phenomena, vol. 19, pp. 1–251. Academic Press, London (2001)

    Chapter  Google Scholar 

  66. Schütz, G.M.: The Space-time structure of extreme current and activity events in the ASEP. In: Proceedings of the “International School and Workshop on Nonlinear Mathematical Physics and Natural Hazards”. Springer (To Appear)

    Google Scholar 

  67. Seppäläinen, T.: Hydrodynamic profiles for the totally asymmetric exclusion process with a slow bond. J. Stat. Phys. 102, 69–96 (2001)

    Article  MATH  Google Scholar 

  68. Simon, D.: Construction of a coordinate Bethe ansatz for the asymmetric simple exclusion process with open boundaries. J. Stat. Mech. P07017 (2009)

    Google Scholar 

  69. Spohn, H.: Bosonization, vicinal surfaces, and hydrodynamic fluctuation theory. Phys. Rev. E 60, 6411–6420 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  70. Szabo, A., Zwanzig, R., Agmon, N.: Diffusion-controlled reactions with mobile traps. Phys. Rev. Lett. 61, 2496–2499 (1988)

    Article  Google Scholar 

  71. Szavits-Nossan, J., Uzelac, K.: Impurity-induced shocks in the asymmetric exclusion process with long-range hopping. J. Stat. Mech. P12019 (2009)

    Google Scholar 

  72. Szavits-Nossan, J.: Disordered exclusion process revisited: some exact results in the low-current regime. J. Phys. A: Math. Theor. 46, 315001 (2013)

    Article  Google Scholar 

  73. Tang, L.-H., Lyuksyutov, I.F.: Directed polymer localization in a disordered medium. Phys. Rev. Lett. 71, 2745–2748 (1993)

    Article  Google Scholar 

  74. Tripathy, G., Barma, M.: Driven lattice gases with quenched disorder: exact results and different macroscopic regimes. Phys. Rev. E 58(2), 1911–1926 (1998)

    Article  Google Scholar 

  75. Wolf, D.E., Tang, L.-H.: Inhomogeneous growth processes. Pyhs. Rev. Lett. 64, 1591–1594 (1990)

    Google Scholar 

Download references

Acknowledgments

The author thanks B. Meerson, P.L. Krapivsky, V. Popkov and Andreas Schadschneider for inspiring discussions and the Galileo Galilei Institute for Theoretical Physics for hospitality. Partial support by DFG and the INFN during the completion of this work is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunter M. Schütz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Schütz, G.M. (2015). Conditioned Stochastic Particle Systems and Integrable Quantum Spin Systems. In: Gonçalves, P., Soares, A. (eds) From Particle Systems to Partial Differential Equations II. Springer Proceedings in Mathematics & Statistics, vol 129. Springer, Cham. https://doi.org/10.1007/978-3-319-16637-7_15

Download citation

Publish with us

Policies and ethics