Skip to main content

A Two Phase Approach for Pedestrian Detection

  • Conference paper
  • First Online:
Computer Vision - ACCV 2014 Workshops (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9009))

Included in the following conference series:

  • 1980 Accesses

Abstract

Most of current pedestrian detectors have pursued high detection rate without carefully considering sample distributions. In this paper, we argue that the following characteristics must be considered; (1) large intra-class variation of pedestrians (multi-modality), and (2) data imbalance between positives and negatives. Pedestrian detection can be regarded as one of finding needles in a haystack problems (rare class detection). Inspired by a rare class detection technique, we propose a two-phase classifier integrating an existing baseline detector and a hard negative expert by separately conquering recall and precision. Main idea behind the hard negative expert is to reduce sample space to be learned, so that informative decision boundaries can be effectively learned. The multi-modality problem is dealt with a simple variant of a LDA based random forests as the hard negative expert. We optimally integrate two models by learned integration rules. By virtue of the two-phase structure, our method achieve competitive performance with only little additional computation. Our approach achieves 38.44 % mean miss-rate for the reasonable setting of Caltech Pedestrian Benchmark.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Since RF model is a general concept of AdaBoost, it has more flexibility for complex decision boundary than AdaBoost [26].

  2. 2.

    We use the G-SVM package used in [34].

  3. 3.

    Codes for MT-DPM+Context was not provided by author when this paper is submitted.

References

  1. Dollár, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: an evaluation of the state of the art. IEEE Trans. PAMI 34, 743–761 (2012)

    Article  Google Scholar 

  2. Dalal, N., Triggs, B.: Histogram of oriented gradient for human detection. In: CVPR (2005)

    Google Scholar 

  3. Wang, X., Han, T.X., Yan, S.: An hog-lbp human detector with partial occlusion handling. In: ICCV (2009)

    Google Scholar 

  4. Walk, S., Majer, N., Schindler, K., Schiele, B.: New features and insights for pedestrian detection. In: CVPR (2010)

    Google Scholar 

  5. Dollár, P., Tu, Z., Perona, P., Belonggie, S.: Integral channel features. In: BMVC (2009)

    Google Scholar 

  6. Yan, J., Zhang, X., Lei, Z., Liao, S., Li, S.Z.: Robust multi-resolution pedestrian detection in traffic scenes. In: CVPR (2013)

    Google Scholar 

  7. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part based models. IEEE Trans. PAMI 32, 1627–1645 (2010)

    Article  Google Scholar 

  8. Bourdev, L., Brandt, J.: Robust object detection via soft cascade. In: CVPR (2005)

    Google Scholar 

  9. Zhang, C., Viola, P.A.: Multiple-instance pruning for learning efficient cascade detectors. In: NIPS (2007)

    Google Scholar 

  10. Dollár, P., Appel, R., Kienzle, W.: Crosstalk cascades for frame-rate pedestrian detection. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 645–659. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Viola, P., Jones, M.J.: Robust real-time face detection. IJCV 52, 137–154 (2004)

    Article  Google Scholar 

  12. Benenson, R., Mathias, M., Timofte, R., Van Gool, L.: Pedestrian detection at 100 frames per second. In: CVPR (2012)

    Google Scholar 

  13. Dollár, P., Appel, R., Belongie, S., Perona, P.: Fast feature pyramids for object detection. IEEE Trans. PAMI 36, 1532–1545 (2014)

    Article  Google Scholar 

  14. Gall, J., Lempitsky, V.: Class-specific hough forests for object detection. In: CVPR (2009)

    Google Scholar 

  15. Marín, J., Vazquez, D., Lopez, A.M., Amores, J., Leibe, B.: Random forests of local experts for pedestrian detection. In: ICCV (2013)

    Google Scholar 

  16. Joshi, M.V., Agarwal, R.C., Kumar, V.: Mining needles in a haystack: classifying rare classes via two-phase rule induction. In: ACM SIGMOD, pp. 91–102 (2001)

    Google Scholar 

  17. Weiss, G.M.: Mining with rarity: a unifying framework. In: ACM SIGKDD (2004)

    Google Scholar 

  18. Criminisi, A., Shotton, J., Konukoglu, E.: Decision forests: a unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. Found. Trends in Comput. Graph. Vis. 7, 81–227 (2011)

    Article  MATH  Google Scholar 

  19. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugen. 7, 179–188 (1936)

    Article  Google Scholar 

  20. Vondrick, C., Khosla, A., Malisiewicz, T., Torralba, A.: Hoggles: Visualizing object detection features. In: ICCV, IEEE (2013)

    Google Scholar 

  21. Geronimo, D., Lopez, A.M., Sappa, A.D., Graf, T.: Survey of pedestrian detection for advanced driver assistance systems. IEEE Trans. PAMI 32, 1239–1258 (2010)

    Article  Google Scholar 

  22. Park, D., Zitnick, C.L., Ramanan, D., Dollar, P.: Exploring weak stabilization for motion feature extraction. In: CVPR (2013)

    Google Scholar 

  23. Ouyang, W., Wang, X.: Single-pedestrian detection aided by multi-pedestrian detection. In: CVPR (2013)

    Google Scholar 

  24. Park, D., Ramanan, D., Fowlkes, C.: Multiresolution models for object detection. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 241–254. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  25. Hsu, W.H., Kennedy, L.S., Chang, S.F.: Reranking methods for visual search. IEEE MultiMed. 14, 14–22 (2007)

    Article  Google Scholar 

  26. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  27. Lemmond, T.D., Chen, B.Y., Hatch, A.O., Hanley, W.G.: An extended study of the discriminant random forest. Data Mining 8, 123–146 (2010)

    Article  Google Scholar 

  28. Yao, B., Khosla, A., Fei-Fei, L.: Combining randomization and discrimination for fine-grained image categorization. In: CVPR (2011)

    Google Scholar 

  29. Menze, B.H., Kelm, B.M., Splitthoff, D.N., Koethe, U., Hamprecht, F.A.: On oblique random forests. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011, Part II. LNCS, vol. 6912, pp. 453–469. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  30. Duda, R., Hart, P., Stork, D.: Pattern Classification. Wiley-Interscience, Hoboken (2001)

    MATH  Google Scholar 

  31. Hamsici, O.C., Martinez, A.M.: Bayes optimality in linear discriminant analysis. IEEE Trans. PAMI 30, 647–657 (2008)

    Article  Google Scholar 

  32. Devijver, P.A., Kittler, J.: Pattern recognition: a statistical approach. Prentice-Hall, London (1982)

    MATH  Google Scholar 

  33. Joachims, T.: Optimizing search engines using clickthrough data. In: ACM SIGKDD (2002)

    Google Scholar 

  34. Flamary, R., Jrad, N., Phlypo, R., Congedo, M., Rakotomamonjy, A.: Mixed-norm regularization for brain decoding. Comput. Math. Methods Med. 2014, 1–13 (2014)

    Article  MathSciNet  Google Scholar 

  35. Hoiem, D., Efros, A., Hebert, M.: Putting objects in perspective. IJCV 80, 3–15 (2008)

    Article  Google Scholar 

  36. Opencv 3.0. http://opencv.org/

Download references

Acknowledgement

This work was supported by the Development of Autonomous Emergency Braking System for Pedestrian Protection project funded by the Ministry of Trade, Industry and Energy of Korea. (MOTIE)(No.10044775)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In So Kweon .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (pdf 2,281 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Hwang, S., Oh, TH., Kweon, I.S. (2015). A Two Phase Approach for Pedestrian Detection. In: Jawahar, C., Shan, S. (eds) Computer Vision - ACCV 2014 Workshops. ACCV 2014. Lecture Notes in Computer Science(), vol 9009. Springer, Cham. https://doi.org/10.1007/978-3-319-16631-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16631-5_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16630-8

  • Online ISBN: 978-3-319-16631-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics