Skip to main content

A New Gait-Based Identification Method Using Local Gauss Maps

  • Conference paper
  • First Online:
Computer Vision - ACCV 2014 Workshops (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9008))

Included in the following conference series:

Abstract

We propose a new descriptor for human identification based on gait. The current and most prevailing trend in gait representation revolves around encoding body shapes as silhouettes averaged over gait cycles. Our method, however, captures geometric properties of the silhouettes boundaries. Namely, we evaluate contour curvatures locally using Gauss maps. This results in an improved shape representation, as contrasted to average silhouettes. In addition, our approach does not require prior training. We thoroughly demonstrate the superiority of our method in gait-based human identification compared to state-of-the-art approaches. We use the OU-ISIR Large Population dataset, with over 4000 subjects captured at different viewing angles, to provide statistically reliable results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kusakunniran, W., Wu, Q., Zhang, J., Li, H.: Gait recognition under various viewing angles based on correlated motion regression. IEEE Trans. Circ. Syst. Video Technol. 22, 966–980 (2012)

    Article  Google Scholar 

  2. Makihara, Y., Sagawa, R., Mukaigawa, Y., Echigo, T., Yagi, Y.: Gait recognition using a view transformation model in the frequency domain. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 151–163. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. BenAbdelkader, C., Cutler, R., Davis, L.: View-invariant estimation of height and stride for gait recognition. In: Tistarelli, M., Bigun, J., Jain, A.K. (eds.) ECCV 2002. LNCS, vol. 2359, pp. 155–167. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Tsuji, A., Makihara, Y., Yagi, Y.: Silhouette transformation based on walking speed for gait identification. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 717–722. IEEE (2010)

    Google Scholar 

  5. Kusakunniran, W., Wu, Q., Zhang, J., Li, H.: Speed-invariant gait recognition based on procrustes shape analysis using higher-order shape configuration. In: 2011 18th IEEE International Conference on Image Processing (ICIP), pp. 545–548. IEEE (2011)

    Google Scholar 

  6. Hossain, A., Makihara, Y., Wang, J., Yagi, Y., et al.: Clothing-invariant gait identification using part-based clothing categorization and adaptive weight control. Pattern Recogn. 43, 2281–2291 (2010)

    Article  Google Scholar 

  7. Sarkar, S., Phillips, P.J., Liu, Z., Vega, I.R., Grother, P., Bowyer, K.W.: The humanid gait challenge problem: data sets, performance, and analysis. IEEE Trans. Pattern Anal. Mach. Intell. 27, 162–177 (2005)

    Article  Google Scholar 

  8. Niyogi, S.A., Adelson, E.H.: Analyzing and recognizing walking figures in xyt. In: Proceedings of the 1994 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 1994, pp. 469–474. IEEE (1994)

    Google Scholar 

  9. Murase, H., Sakai, R.: Moving object recognition in eigenspace representation: gait analysis and lip reading. Pattern Recognit. Lett. 17, 155–162 (1996)

    Article  Google Scholar 

  10. BenAbdelkader, C., Cutler, R., Nanda, H., Davis, L.: EigenGait: motion-based recognition of people using image self-similarity. In: Bigun, J., Smeraldi, F. (eds.) AVBPA 2001. LNCS, vol. 2091, pp. 284–294. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  11. BenAbdelkader, C., Cutler, R., Davis, L.: Motion-based recognition of people in eigengait space. In: Proceedings of the Fifth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 267–272. IEEE (2002)

    Google Scholar 

  12. Wang, L., Hu, W., Tan, T.: A new attempt to gait-based human identification. In: Proceedings of the 16th International Conference on Pattern Recognition, vol. 1, pp. 115–118. IEEE (2002)

    Google Scholar 

  13. Wang, L., Tan, T., Ning, H., Hu, W.: Silhouette analysis-based gait recognition for human identification. IEEE Trans. Pattern Anal. Mach. Intell. 25, 1505–1518 (2003)

    Article  Google Scholar 

  14. Liu, Z., Sarkar, S.: Simplest representation yet for gait recognition: averaged silhouette. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 4, pp. 211–214. IEEE (2004)

    Google Scholar 

  15. Han, J., Bhanu, B.: Individual recognition using gait energy image. IEEE Trans. Pattern Anal. Mach. Intell. 28, 316–322 (2006)

    Article  Google Scholar 

  16. Bashir, K., Xiang, T., Gong, S.: Gait recognition using gait entropy image (2009)

    Google Scholar 

  17. Wang, C., Zhang, J., Pu, J., Yuan, X., Wang, L.: Chrono-gait image: a novel temporal template for gait recognition. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 257–270. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Liu, Z., Sarkar, S.: Improved gait recognition by gait dynamics normalization. IEEE Trans. Pattern Anal. Mach. Intell. 28, 863–876 (2006)

    Article  Google Scholar 

  19. Sivapalan, S., Chen, D., Denman, S., Sridharan, S., Fookes, C.: Gait energy volumes and frontal gait recognition using depth images. In: 2011 International Joint Conference on Biometrics (IJCB), pp. 1–6. IEEE (2011)

    Google Scholar 

  20. Hofmann, M., Bachmann, S., Rigoll, G.: 2.5d gait biometrics using the depth gradient histogram energy image. In: 2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS), pp. 399–403. IEEE (2012)

    Google Scholar 

  21. Makihara, Y., Muramatsu, D., Iwama, H., Yagi, Y.: On combining gait features. In: 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), pp. 1–8. IEEE (2013)

    Google Scholar 

  22. Tang, S., Wang, X., Lv, X., Han, T.X., Keller, J., He, Z., Skubic, M., Lao, S.: Histogram of oriented normal vectors for object recognition with a depth sensor. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part II. LNCS, vol. 7725, pp. 525–538. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  23. Gauss, K.F.: General investigations of curved surfaces of 1827 and 1825, translated with notes and a bibliography by J.C. Morehead and A.M. Hiltebeitel. The Princeton University Library (1902)

    Google Scholar 

  24. Hazewinkel, M.: Encyclopaedia of Mathematics, vol. 13. Springer, New York (2001)

    MATH  Google Scholar 

  25. Johansson, G.: Visual motion perception. Sci. Am. 232, 76–88 (1975)

    Article  Google Scholar 

  26. Bobick, A.F., Johnson, A.Y.: Gait recognition using static, activity-specific parameters. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 1, p. I-423. IEEE (2001)

    Google Scholar 

  27. Yam, C., Nixon, M.S., Carter, J.N.: Automated person recognition by walking and running via model-based approaches. Pattern Recogn. 37, 1057–1072 (2004)

    Article  Google Scholar 

  28. Urtasun, R., Fua, P.: 3d tracking for gait characterization and recognition. In: Proceedings of the Sixth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 17–22. IEEE (2004)

    Google Scholar 

  29. Yang, H.-D., Lee, S.-W.: Reconstruction of 3D human body pose for gait recognition. In: Zhang, D., Jain, A.K. (eds.) ICB 2005. LNCS, vol. 3832, pp. 619–625. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  30. Kumar, M., Babu, R.V.: Human gait recognition using depth camera: a covariance based approach. In: Proceedings of the Eighth Indian Conference on Computer Vision, Graphics and Image Processing, p. 20. ACM (2012)

    Google Scholar 

  31. Hussein, M.E., Torki, M., Gowayyed, M.A., El-Saban, M.: Human action recognition using a temporal hierarchy of covariance descriptors on 3d joint locations. In: Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, pp. 2466–2472. AAAI Press (2013)

    Google Scholar 

  32. Phillips, P.J., Sarkar, S., Robledo, I., Grother, P., Bowyer, K.: The gait identification challenge problem: data sets and baseline algorithm. In: Proceedings of the 16th International Conference on Pattern Recognition, vol. 1, pp. 385–388. IEEE (2002)

    Google Scholar 

  33. Cuntoor, N., Kale, A., Chellappa, R.: Combining multiple evidences for gait recognition. In: Proceedings of the 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, (ICASSP 2003), vol. 3, p. III-33. IEEE (2003)

    Google Scholar 

  34. Liu, Y., Collins, R., Tsin, Y.H.: Gait sequence analysis using frieze patterns. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part II. LNCS, vol. 2351, pp. 657–671. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  35. Lam, T.H., Cheung, K.H., Liu, J.N.: Gait flow image: a silhouette-based gait representation for human identification. Pattern Recogn. 44, 973–987 (2011)

    Article  MATH  Google Scholar 

  36. Tao, D., Li, X., Maybank, S.J., Wu, X.: Human carrying status in visual surveillance. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 1670–1677. IEEE (2006)

    Google Scholar 

  37. Kobayashi, T., Otsu, N.: A three-way auto-correlation based approach to human identification by gait. In: IEEE Workshop on Visual Surveillance, vol. 1, p. 4. Citeseer (2006)

    Google Scholar 

  38. Kobayashi, T., Otsu, N.: Three-way auto-correlation approach to motion recognition. Pattern Recogn. Lett. 30, 212–221 (2009)

    Article  Google Scholar 

  39. Hofmann, M., Rigoll, G.: Improved gait recognition using gradient histogram energy image. In: 19th IEEE International Conference on Image Processing (ICIP), pp. 1389–1392. IEEE (2012)

    Google Scholar 

  40. Hofmann, M., Rigoll, G.: Exploiting gradient histograms for gait-based person identification. In: IEEE International Conference on Image Processing (ICIP), pp. 4171–4175 (2013)

    Google Scholar 

  41. Lombardi, S., Nishino, K., Makihara, Y., Yagi, Y.: Two-point gait: decoupling gait from body shape. In: 2013 IEEE International Conference on Computer Vision (ICCV), pp. 1041–1048. IEEE (2013)

    Google Scholar 

  42. Lee, C.S., Elgammal, A.: Style adaptive contour tracking of human gait using explicit manifold models. Mach. Vis. Appl. 23, 461–478 (2012)

    Article  Google Scholar 

  43. Boulgouris, N.V., Plataniotis, K.N., Hatzinakos, D.: Gait recognition using dynamic time warping. In: 2004 IEEE 6th Workshop on Multimedia Signal Processing, pp. 263–266. IEEE (2004)

    Google Scholar 

  44. Iwama, H., Okumura, M., Makihara, Y., Yagi, Y.: The OU-ISIR gait database comprising the large population dataset and performance evaluation of gait recognition. IEEE Trans. Inform. Forensics Secur. 7, 1511–1521 (2012)

    Article  Google Scholar 

  45. Makihara, Y., Yagi, Y.: Silhouette extraction based on iterative spatio-temporal local color transformation and graph-cut segmentation. In: 19th International Conference on Pattern Recognition, ICPR 2008, pp. 1–4. IEEE (2008)

    Google Scholar 

  46. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR, vol. 1, pp. 886–893. IEEE (2005)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by the JST CREST “Behavior Understanding based on Intention-Gait Model” project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hazem El-Alfy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

El-Alfy, H., Mitsugami, I., Yagi, Y. (2015). A New Gait-Based Identification Method Using Local Gauss Maps. In: Jawahar, C., Shan, S. (eds) Computer Vision - ACCV 2014 Workshops. ACCV 2014. Lecture Notes in Computer Science(), vol 9008. Springer, Cham. https://doi.org/10.1007/978-3-319-16628-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16628-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16627-8

  • Online ISBN: 978-3-319-16628-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics