Skip to main content

Optimization Algorithms

  • Chapter
  • First Online:
Full-3D Seismic Waveform Inversion

Part of the book series: Springer Geophysics ((SPRINGERGEOPHYS))

  • 1708 Accesses

Abstract

Seismic inverse problems are often solved using optimization algorithms. The formulation given in Chaps. 3 and 4 provides the machinery for constructing the gradient and the approximate Hessian of the objective function that can be used in local optimization algorithms to search for a local optimal model that provides smaller misfits with observed waveforms than its neighbors. Local optimization algorithms can be classified based on whether an approximate Hessian of the objective function is explicitly constructed. The scattering-integral (SI) method is based on explicitly constructing the approximation Hessian in the Gauss-Newton algorithm or its variants. The adjoint-wavefield (AW) method is based on constructing and utilizing only the gradient of the objective function in a conjugate-gradient or quasi-Newton-type optimization algorithm. In Sect. 5.1 I will discuss the SI method and the various ingredients related to its efficient implementation. In Sect. 5.2, I will derive the AW method using the adjoint representation theorem and give a tutorial about how to compute the event kernels based on the AW method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Once a descent direction is given, the line search determines how far we should move along the descent direction, i.e., the optimal step length along the descent direction. The other widely used technique is known as the “trust region” method.

References

  • Akcelik, V., Biros, G., & Ghattas, O. (2002). Parallel multiscale Gauss–Newton–Krylov methods for inverse wave propagation. Proceedings of the 2002 ACM/IEEE conference on Supercomputing, (pp. 1–15).

    Google Scholar 

  • Akcelik, V., Bielak, J., Biros, G., Epanomeritakis, I., Fernandez, A., Ghattas, O., Kim, E. J., Lopez, J., O’Hallaron, D., Tu, T., et al. (2003). High resolution forward and inverse earthquake modeling on terascale computers. In Supercomputing, 2003 ACM/IEEE Conference (pp. 52–52). IEEE.

    Google Scholar 

  • Balay, S., Gropp, W. D., McInnes, L. C., & Smith, B. F. (1997). Efficient management of parallelism in object oriented numerical software libraries. In E. Arge, A. M. Bruaset, & H. P. Langtangen (Eds.), Modern software tools in scientific computing (pp. 163–202). New York: Springer Science & Business Media.

    Google Scholar 

  • Balay, S., Abhyankar, S., Adams, M., Brown, J., Brune, P., Buschelman, K., Eijkhout, V., Gropp, W. D., Kaushik, D., Knepley, M. G., McInnes, L. C., Rupp, K., Smith, B. F., & Zhang, H. (2014a). PETSc Users Manual. Technical Report ANL-95/11—Revision 3.5, Argonne National Laboratory.

    Google Scholar 

  • Balay, S., Abhyankar, S., Adams, M., Brown, J., Brune, P., Buschelman, K., Eijkhout, V., Gropp, W. D., Kaushik, D., Knepley, M. G., McInnes, L. C., Rupp, K., Smith, B. F., & Zhang, H. (2014b). PETSc Web page. http://www.mcs.anl.gov/petsc. Last accessed 27 June 2015.

  • Bamberger, A., Chavent, G., & Lailly, P. (1977). Une application de la théorie du contrôle à un problème inverse de sismique. Annales de géophysique, 33, 183–199.

    Google Scholar 

  • Bamberger, A., Chavent, G., Hemon, C., & Lailly, P. (1982). Inversion of normal incidence seismograms. Geophysics, 47(5), 757–770.

    Google Scholar 

  • Baur, O., & Austen, G. (2004). A parallel iterative algorithm for large-scale problems of type potential field recovery from satellite data. Proceedings of the Joint CHAMP/GRACE Science Meeting, 1, 2.

    Google Scholar 

  • Beale, E. (1972). A derivation of conjugate gradients. In F. A. Lootsma (Ed.), Numerical methods for nonlinear optimization, pp. 39–43. London: Academic Press.

    Google Scholar 

  • Bengtsson, L., Ghil, M., & Källén, E. (1981). Dynamic meteorology: Data assimilation methods. Applied mathematical sciences. New York: Springer.

    Google Scholar 

  • Bennett, A. (1992). Inverse methods in physical oceanography. Arnold and Caroline Rose Monograph Series of the American So. Cambridge: Cambridge University Press.

    Google Scholar 

  • Beylkin, G. (1985). Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized Radon transform. Journal of Mathematical Physics, 26(1), 99–108.

    Google Scholar 

  • Biegler, L. (2003). Large-scale PDE-constrained optimization. Lecture Notes in Computational Science and Engineering. Springer Berlin Heidelberg.

    Google Scholar 

  • Bleistein, N., Cohen, J., & Stockwell, J. (2001). Mathematics of multidimensional seismic imaging, migration, and inversion. Interdisciplinary Applied Mathematics. New York: Springer.

    Google Scholar 

  • Campbell, S., & Meyer, C. (2009). Generalized inverses of linear transformations. Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104).

    Google Scholar 

  • Chen, P. (2011). Full-wave seismic data assimilation: Theoretical background and recent advances. Pure and Applied Geophysics, 168(10), 1527–1552.

    Google Scholar 

  • Chen, P., Jordan, T., & Zhao, L. (2005). Finite-moment tensor of the 3 september 2002 yorba linda earthquake. Bulletin of the Seismological Society of America, 95(3), 1170–1180.

    Google Scholar 

  • Chen, P., Jordan, T. H., & Zhao, L. (2007a). Full three-dimensional tomography: A comparison between the scattering-integral and adjoint-wavefield methods. Geophysical Journal International, 170(1), 175–181.

    Google Scholar 

  • Chen, P., Zhao, L., & Jordan, T. H. (2007b). Full 3D tomography for the crustal structure of the Los Angeles region. Bulletin of the Seismological Society of America, 97(4), 1094–1120.

    Google Scholar 

  • Dahlen, F., Hung, S., & Nolet, G. (2000). Fréchet kernels for finite-frequency traveltimes-I. Theory. Geophysical Journal International, 141, 157–174.

    Google Scholar 

  • Dai, Y.-H., & Yuan, Y. (1999). A nonlinear conjugate gradient method with a strong global convergence property. SIAM Journal on Optimization, 10(1), 177–182.

    Google Scholar 

  • Dai, Y., & Yuan, Y. (2001). An efficient hybrid conjugate gradient method for unconstrained optimization. Annals of Operations Research, 103(1–4), 33–47.

    Google Scholar 

  • Daley, R. (1993). Atmospheric data analysis. Cambridge Atmospheric and Space Science Series. Cambridge: Cambridge University Press.

    Google Scholar 

  • deGroot-Hedlin, C., & Constable, S. (1990). Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data. Geophysics, 55(12), 1613–1624.

    Google Scholar 

  • Dennis, J. E., Jr., Gay, D. M., & Walsh, R. E. (1981). An adaptive nonlinear least-squares algorithm. ACM Transaction on Mathematical Software, 7(3), 348–368.

    Google Scholar 

  • Devaney, A. (1981). Inverse-scattering theory within the Rytov approximation. Optics Letters, 6(8), 374–376.

    Google Scholar 

  • Fichtner, A., & Trampert, J. (2011). Hessian kernels of seismic data functionals based upon adjoint techniques. Geophysical Journal International, 185(2), 775–798.

    Google Scholar 

  • Fichtner, A., Kennett, B., Igel, H., & Bunge, H. (2009). Full seismic waveform tomography for upper-mantle structure in the Australasian region using adjoint methods. Geophysical Journal International, 179(3), 1703–1725.

    Google Scholar 

  • Fletcher, R. (2013). Practical methods of optimization. Chichester, England: Wiley.

    Google Scholar 

  • Fletcher, R., & Reeves, C. M. (1964). Function minimization by conjugate gradients. Computer Journal, 7(2), 149–154.

    Google Scholar 

  • Got, J.-L., Fréchet, J., & Klein, F. W. (1994). Deep fault plane geometry inferred from multiplet relative relocation beneath the south flank of Kilauea. Journal of Geophysical Research, 99(B8), 15375–15386.

    Google Scholar 

  • Hager, W. W., & Zhang, H. (2005). A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM Journal on Optimization, 16(1), 170–192.

    Google Scholar 

  • Hestenes, M. R., & Stiefel, E. (1952). Methods of conjugate gradients for solving linear systems. Journal of Research of the National Bureau Standards, 49(6), 409–436.

    Google Scholar 

  • Huang, H., Wang, L., Lee, E.-J., & Chen, P. (2012). An MPI-CUDA implementation and optimization for parallel sparse equations and least squares (LSQR). Procedia Computer Science, 9, 76–85.

    Google Scholar 

  • Huang, H., Dennis, J. M., Wang, L., & Chen, P. (2013). A scalable parallel LSQR algorithm for solving large-scale linear system for tomographic problems: A case study in seismic tomography. Procedia Computer Science, 18, 581–590.

    Google Scholar 

  • Iyer, H., & Hirahara, K. (1993). Seismic tomography: Theory and practice. London: Chapman & Hall.

    Google Scholar 

  • Jordan, T. H., & Sverdrup, K. A. (1981). Teleseismic location techniques and their application to earthquake clusters in the south-central Pacific. Bulletin of the Seismological Society of America, 71(4), 1105–1130.

    Google Scholar 

  • Kalnay, E. (2003). Atmospheric modeling, data assimilation and predictability. Cambridge: Cambridge University Press.

    Google Scholar 

  • Käufl, P., Fichtner, A., & Igel, H. (2013). Probabilistic full waveform inversion based on tectonic regionalization—Development and application to the Australian upper mantle. Geophysical Journal International, 193(1), 437–451.

    Google Scholar 

  • Lee, E.-J., Huang, H., Dennis, J. M., Chen, P., & Wang, L. (2013). An optimized parallel LSQR algorithm for seismic tomography. Computers & Geosciences, 61, 184–197.

    Google Scholar 

  • Lee, E.-J., Chen, P., Jordan, T. H., Maechling, P. B., Denolle, M. A., & Beroza, G. C. (2014). Full-3-D tomography for crustal structure in Southern California based on the scattering-integral and the adjoint-wavefield methods. Journal of Geophysical Research, 119(8), 6421–6451.

    Google Scholar 

  • Levenberg, K. (1944). A method for the solution of certain nonlinear problems in least squares. The Quarterly of Applied Mathematics, 2(2), 164–168.

    Google Scholar 

  • Liu, Q. (2006). Spectral-element simulations of 3-D seismic wave propagation and applications to source and structural inversions. PhD thesis, California Institute of Technology.

    Google Scholar 

  • Liu, Q., & Tromp, J. (2006). Finite-frequency kernels based on adjoint methods. Bulletin of the Seismological Society of America, 96(6), 2383–2397.

    Google Scholar 

  • Liu, J.-S., Liu, F.-T., Liu, J., & Hao, T.-Y. (2006). Parallel LSQR algorithms used in seismic tomography. Chinese Journal of Geophysics-CH, 49(2), 483–488.

    Google Scholar 

  • Malanotte-Rizzoli, P. (1996). Modern approaches to data assimilation in ocean modeling. Elsevier Oceanography Series. Elsevier Science.

    Google Scholar 

  • Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial & Applied Mathematics, 11(2), 431–441.

    Google Scholar 

  • Montgomery, D., Peck, E., & Vining, G. (2012). Introduction to linear regression analysis. Wiley Series in Probability and Statistics. Hoboken, New Jersey: Wiley.

    Google Scholar 

  • Nolet, G. (1985). Solving or resolving inadequate and noisy tomographic systems. Journal of Computational Physics, 61(3), 463–482.

    Google Scholar 

  • Paige, C. C., & Saunders, M. A. (1982). LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Transaction on Mathematical Software, 8(1), 43–71.

    Google Scholar 

  • Polak, E., & Ribiere, G. (1969). Note sur la convergence de méthodes de directions conjuguées. ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation Mathématique Et Analyse Numérique, 3(R1), 35–43.

    Google Scholar 

  • Powell, M. J. D. (1976). Some convergence properties of the conjugate gradient method. Mathematical Programming, 11(1), 42–49.

    Google Scholar 

  • Powell, M. J. D. (1977). Restart procedures for the conjugate gradient method. Mathematical Programming, 12(1), 241–254.

    Google Scholar 

  • Pratt, R. G. (1999). Seismic waveform inversion in the frequency domain, part 1: Theory and verification in a physical scale model. Geophysics, 64(3), 888–901.

    Google Scholar 

  • Pratt, R. G., Shin, C., & Hick, G. (1998). Gauss–Newton and full Newton methods in frequency–space seismic waveform inversion. Geophysical Journal International, 133(2), 341–362.

    Google Scholar 

  • Sambridge, M. (1990). Non-linear arrival time inversion: Constraining velocity anomalies by seeking smooth models in 3-d. Geophysical Journal International, 102(3), 653–677.

    Google Scholar 

  • Sieminski, A., Liu, Q., Trampert, J., & Tromp, J. (2007). Finite-frequency sensitivity of surface waves to anisotropy based upon adjoint methods. Geophysical Journal International, 168(3), 1153–1174.

    Google Scholar 

  • Sorenson, H. (1969). Comparison of some conjugate direction procedures for function minimization. Journal of the Franklin Institute, 288(6), 421–441.

    Google Scholar 

  • Tape, C., Liu, Q., Maggi, A., & Tromp, J. (2010). Seismic tomography of the southern California crust based on spectral-element and adjoint methods. Geophysical Journal International, 180(1), 433–462.

    Google Scholar 

  • Tarantola, A. (1984). Inversion of seismic reflection data in the acoustic approximation. Geophysics, 49(8), 1259–1266.

    Google Scholar 

  • Tarantola, A. (1988a). Theoretical background for the inversion of seismic waveforms including elasticity and attenuation. Pure and Applied Geophysics, 128(1/2), 365–399.

    Google Scholar 

  • Tarantola, A. (1988b). Theoretical background for the inversion of seismic waveforms including elasticity and attenuation. Pure and Applied Geophysics, 128, 365–399.

    Google Scholar 

  • Tarantola, A. (2005). Inverse problem theory and methods for model parameter estimation. Philadelphia: Society for Industrial and Applied Mathematics.

    Google Scholar 

  • Tromp, J., Tape, C., & Liu, Q. (2005). Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels. Geophysical Journal International, 160(1), 195–216.

    Google Scholar 

  • Waldhauser, F., & Ellsworth, W. L. (2000). A double-difference earthquake location algorithm: Method and application to the northern Hayward fault, California. Bulletin of the Seismological Society of America, 90(6), 1353–1368.

    Google Scholar 

  • Waldhauser, F., & Ellsworth, W. L. (2002). Fault structure and mechanics of the Hayward Fault, California, from double-difference earthquake locations. Journal of Geophysical Research, 107(B3), ESE–3.

    Google Scholar 

  • Woodward, M. (1992a). A qualitative comparison of the first-order Born and Rytov approximations. SEP-60: Stanford Exploration Project, 203–214.

    Google Scholar 

  • Woodward, M. J. (1992b). Wave-equation tomography. Geophysics, 57(1), 15–26.

    Google Scholar 

  • Wu, R.-S., & Toksöz, M. N. (1987). Diffraction tomography and multisource holography applied to seismic imaging. Geophysics, 52(1), 11–25.

    Google Scholar 

  • Wunsch, C. (1996). The ocean circulation inverse problem. Cambridge: Cambridge University Press.

    Google Scholar 

  • Zhang, H., & Thurber, C. H. (2003). Double-difference tomography: The method and its application to the Hayward fault, California. Bulletin of the Seismological Society of America, 93(5), 1875–1889.

    Google Scholar 

  • Zhang, X., Chen, P., & Pullammanappallil, S. (2013). Automating adjoint wave-equation travel-time tomography using scientific workflow. Earthquake Science, 26(5), 331–339.

    Google Scholar 

  • Zhao, L., & Jordan, T. H. (2006). Structural sensitivities of finite-frequency seismic waves: A full-wave approach. Geophysical Journal International, 165(3), 981–990.

    Google Scholar 

  • Zhao, L., Jordan, T. H., & Chapman, C. H. (2000). Three-dimensional Fréchet differential kernels for seismic delay times. Geophysical Journal International, 141(3), 558–576.

    Google Scholar 

  • Zhao, L., Jordan, T. H., Olsen, K. B., & Chen, P. (2005). Fréchet kernels for imaging regional earth structure based on three-dimensional reference models. Bulletin of the Seismological Society of America, 95(6), 2066–2080.

    Google Scholar 

  • Zupanski, D., & Zupanski, M. (2006). Model error estimation employing an ensemble data assimilation approach. Monthly Weather Review, 134, 1337–1354.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Po Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chen, P., Lee, EJ. (2015). Optimization Algorithms. In: Full-3D Seismic Waveform Inversion. Springer Geophysics. Springer, Cham. https://doi.org/10.1007/978-3-319-16604-9_5

Download citation

Publish with us

Policies and ethics