Skip to main content

Data Sensitivity Kernels

  • Chapter
  • First Online:
Full-3D Seismic Waveform Inversion

Part of the book series: Springer Geophysics ((SPRINGERGEOPHYS))

Abstract

The discrepancies between synthetic and observed waveforms can be quantified in various ways. The waveform difference (i.e., subtracting the synthetic waveform from the observed waveform and minimizing the energy of the difference) is one approach that has been widely adopted in the active-source full-wave inversion community. In passive-source large-scale (e.g., global- and continental-scale) tomography using transmitted waves, discrepancies are often quantified using phase-delay time and/or group-delay time. The theoretical formulation derived in Chap. 3 therefore needs to be extended to arbitrary misfit measures, which is formalized using data functionals in Sect. 4.1 of this chapter. In Sect. 4.2, I will introduce the concept of the wavefield perturbation kernel (WPK) and give a general approach for deriving Fréchet kernels of arbitrary data functionals. For data functionals defined in terms of the complex phase of the waveform, I will draw connections with the Rytov transform and analyze the validity of the Rytov approximation. In Sect. 4.3, I generalize the formulation to different parameterization of the source and structural models. In particular, I will derive Fréchet kernels for anisotropy and anelastic attenuation. In Sect. 4.4, I will give tutorials about how to compute the Fréchet kernels using the forward wavefield from the source and the RGT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here I have dropped the \(\tilde {}\) on top of the Green’s tensor and the forward wavefield used in Eqs. 3.413 and 3.414 to reduce clutter.

  2. 2.

    An increase in \(\Delta \tau _{q}\) leads to a decrease in waveform amplitude and \(\Delta \tau _{q}\) has the unit of time, therefore it is named the amplitude-reduction time.

  3. 3.

    This identity can be verified by expressing \(\nabla ^{2}\left [a(\mathbf {x})b(\mathbf {x})\right ]=\nabla \cdot \left [\nabla \left (ab\right )\right ]=\nabla \cdot \left (a\nabla b+b\nabla a\right )=\nabla \cdot \left (a\nabla b\right )+\nabla \cdot \left (b\nabla a\right )=a\nabla ^{2}b+\nabla a\cdot \nabla b+\nabla b\cdot \nabla a+b\nabla ^{2}a=a\nabla ^{2}b+b\nabla ^{2}a+2\nabla a\cdot \nabla b.\)

  4. 4.

    Note that the Green’s tensor \(\mathbf {G}\) used in Eq. 4.185 here is the RGT, i.e., the Green’s tensor from the receiver to the scatterer, while the one used in Eqs. (16)–(17) in (Zhao et al. 2005) is the Green’s tensor from the scatterer to the receiver. Therefore no transpose operation is applied on the RGT in Eq. 4.185. The kernel given in Eq. 4.185 is for the relative perturbation \(\delta \alpha /\alpha \), while the kernels in Eqs. (16)–(17) in (Zhao et al. 2005) are for the absolute perturbation \(\delta \alpha \). Therefore Eq. 4.185 has the factor \(\alpha ^{2}(\mathbf {x})\), while Eqs. (16)–(17) in (Zhao et al. 2005) have the factor \(\alpha (\mathbf {x})\).

  5. 5.

    Note that no transpose operation is needed on the RGT \(\mathbf {G}\) in Eq. 4.186 here, while the Green’s tensor used in Eqs. (18)–(19) in (Zhao et al. 2005), which is from the scatterer to the receiver, needs to be transposed. The kernel given in Eq. 4.186 here is for the relative perturbation \(\delta \beta /\beta \), while those in Eqs. (18)–(19) in (Zhao et al. 2005) are for the absolute perturbation \(\delta \beta \). Therefore Eq. 4.186 here has the factor \(\beta ^{2}(\mathbf {x})\), while Eqs. (18)–(19) in (Zhao et al. 2005) have the factor \(\beta (\mathbf {x})\). Equation 4.186 here and Eqs. (18)–(19) in (Zhao et al. 2005) differ by a minus sign.

  6. 6.

    Note that the expressions for \(J_{s},K_{s},M_{s},G_{s},B_{s},H_{s},D_{s},E_{s}\) given here differ from the corresponding equations in (Chen and Tromp 2007) by a minus sign, which is due to differences in the coordinate system. The coordinate system used here is the A&R coordinate, which is consistent with the one used in Sect. 2.5.3 of (Babuska and Cara 1991), therefore expressions for \(G_{s},B_{s},H_{s},E_{s}\) given here are identical to the corresponding equations given in Sect. 2.5.3 of (Babuska and Cara 1991).

  7. 7.

    The COO format stores a list of (row, column, value) tuples.

References

  • Aki, K., & Richards, P. G. (2002). Quantitative seismology (second). Sausalito, California: University Science Books.

    Google Scholar 

  • Babuska, V., & Cara, M. (1991). Seismic anisotropy in the earth. European Consortium for Mathematics in Industry. The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Backus, G. (1962). Long-wave elastic anisotropy produced by horizontal layering. Journal of Geophysical Research, 67(11), 4427–4440.

    Google Scholar 

  • Backus, G. E. (1977a). Interpreting the seismic glut moments of total degree two or less. Geophysical Journal International, 51(1), 1–25.

    Google Scholar 

  • Backus, G. E. (1977b). Seismic sources with observable glut moments of spatial degree two. Geophysical Journal International, 51(1), 27–45.

    Google Scholar 

  • Backus, G., & Gilbert, F. (1968). The resolving power of gross earth data. Geophysical Journal International, 16(2), 169–205.

    Google Scholar 

  • Ben-Menahem, A. (1961). Radiation of seismic surface-waves from finite moving sources. Bulletin of the Seismological Society of America, 51(3), 401–435.

    Google Scholar 

  • Beydoun, W., & Tarantola, A. (1988). First Born and Rytov approximations: Modeling and inversion conditions in a canonical example. The Journal of the Acoustical Society of America , 83(3), 1045–1055.

    Google Scholar 

  • Bozdağ, E., Trampert, J., & Tromp, J. (2011). Misfit functions for full waveform inversion based on instantaneous phase and envelope measurements. Geophysical Journal International, 185(2), 845–870.

    Google Scholar 

  • Brenders, A., & Pratt, R. (2007). Full waveform tomography for lithospheric imaging: Results from a blind test in a realistic crustal model. Geophysical Journal International, 168(1), 133–151.

    Google Scholar 

  • Chen, P. (2011). Full-wave seismic data assimilation: Theoretical background and recent advances. Pure and Applied Geophysics, 168(10), 1527–1552.

    Google Scholar 

  • Chen, M., & Tromp, J. (2007). Theoretical and numerical investigations of global and regional seismic wave propagation in weakly anisotropic earth models. Geophysical Journal International, 168(3), 1130–1152.

    Google Scholar 

  • Chen, P., Jordan, T., & Zhao, L. (2005a). Finite-moment tensor of the 3 september 2002 Yorba Linda earthquake. Bulletin of the Seismological Society of America, 95(3), 1170–1180.

    Google Scholar 

  • Chen, Q., Zhou, C., Luo, J., & Ming, D. (2005b). Fast segmentation of high-resolution satellite images using watershed transform combined with an efficient region merging approach. In Combinatorial image analysis , pp. 621–630. Berlin Heidelberg: Springer.

    Google Scholar 

  • Chen, P., Jordan, T. H., & Zhao, L. (2007a). Full three-dimensional tomography: A comparison between the scattering-integral and adjoint-wavefield methods. Geophysical Journal International, 170(1), 175–181.

    Google Scholar 

  • Chen, P., Zhao, L., & Jordan, T. H. (2007b). Full 3D tomography for the crustal structure of the Los Angeles region. Bulletin of the Seismological Society of America, 97(4), 1094–1120.

    Google Scholar 

  • Chen, P., Zhao, L., & Jordan, T. H. (2007b). Full 3D tomography for the crustal structure of theLos Angeles region. Bulletin of the Seismological Society of America, 97(4), 1094–1120.

    Google Scholar 

  • Chen, P., Jordan, T. H., & Lee, E.-J. (2010a). Perturbation kernels for generalized seismological data functionals (GSDF). Geophysical Journal International, 183(2), 869–883.

    Google Scholar 

  • Chen, P., Jordan, T. H., & Zhao, L. (2010b). Resolving fault plane ambiguity for small earthquakes. Geophysical Journal International, 181(1), 493–501.

    Google Scholar 

  • Chernov, L. (1960). Wave propagation in a random medium. Dover Publications.

    Google Scholar 

  • Chevrot, S. (2006). Finite-frequency vectorial tomography: A new method for high-resolution imaging of upper mantle anisotropy. Geophysical Journal International, 165(2), 641–657.

    Google Scholar 

  • Cochard, A., Igel, H., Schuberth, B., Suryanto, W., Velikoseltsev, A., Schreiber, U., Wassermann, J., Scherbaum, F., & Vollmer, D. (2006). Rotational motions in seismology: Theory, observation, simulation. In Earthquake source asymmetry, structural media and rotation effects , pp. 391–411. Berlin Heidelberg: Springer.

    Google Scholar 

  • Couprie, M., & Bertrand, G. (1997). Topological gray-scale watershed transformation. In Optical science, engineering and instrumentation’97, pp. 136–146. International Society for Optics and Photonics.

    Google Scholar 

  • Couprie, M., Najman, L., & Bertrand, G. (2005). Quasi-linear algorithms for the topological watershed. Journal of Mathematical Imaging and Vision, 22(2–3), 231–249.

    Google Scholar 

  • Dahlen, F. A., & Baig, A. M. (2002). Fréchet kernels for body-wave amplitudes. Geophysical Journal International, 150, 440–466.

    Google Scholar 

  • Dahlen, F. A., & Tromp, J. (1998). Theoretical global seismology. Princeton, New Jersey: Princeton University Press.

    Google Scholar 

  • Dahlen, F. A., & Zhou, Y. (2006). Surface-wave group-delay and attenuation kernels. Geophysical Journal International, 165(2), 545–554.

    Google Scholar 

  • Dahlen, F., Hung, S., & Nolet, G. (2000). Fréchet kernels for finite-frequency traveltimes-I. Theory. Geophysical Journal International, 141, 157–174.

    Google Scholar 

  • Diersen, S., Lee, E., Spears, D., Chen, P., & Wang, L. (2011). Classification of seismic windows using artificial neural networks. In Procedia Computer Science proceedings Tsukuba, Japan.

    Google Scholar 

  • Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference earth model. Physics of the Earth and Planetary Interiors, 25(4), 297–356.

    Google Scholar 

  • Ekström, G., Tromp, J., & Larson, E. (1997). Measurements and global models of surface wave propagation. Journal of Geophysical Research, 102(B4), 8137–8157.

    Google Scholar 

  • Fichtner, A. (2010). Full seismic waveform modelling and inversion (Advances in geophysical and environmental mechanics and mathematics). Springer.

    Google Scholar 

  • Fichtner, A., Kennett, B. L. N., Igel, H., & Bunge, H.-P. (2008). Theoretical background for continental- and global-scale full-waveform inversion in the time-frequency domain. Geophysical Journal International, 175(2), 665–685.

    Google Scholar 

  • Gallier, J. (2000). Curves and surfaces in geometric modeling: Theory and algorithms (Computer graphics and geometric modeling series). Morgan Kaufmann Publishers.

    Google Scholar 

  • Gauthier, O., Virieux, J., & Tarantola, A. (1986). Two-dimensional nonlinear inversion of seismic waveforms: Numerical results. Geophysics, 51(7), 1387–1403.

    Google Scholar 

  • Gee, L. S., & Jordan, T. H. (1992). Generalized seismological data functionals. Geophysical Journal International, 111(2), 363–390.

    Google Scholar 

  • Harris, F. J. (1978). On the use of windows for harmonic analysis with the discrete fourier transform. Proceedings of the IEEE, 66(1), 51–83.

    Google Scholar 

  • Heidbreder, G. (1967). Multiple scattering and the method of Rytov. Journal of the Optical Society of America, 57, 1477.

    Google Scholar 

  • Hellweg, M., & Boatwright, J. (1999). Mapping the rupture process of moderate earthquakes by inverting accelerograms. Journal of Geophysical Research, 104(B4), 7319–7328.

    Google Scholar 

  • Holschneider, M., Diallo, M. S., Kulesh, M., Ohrnberger, M., Luck, E., & Scherbaum, F. (2005). Characterization of dispersive surface waves using continuous wavelet transforms. Geophysical Journal International, 163(2), 463–478.

    Google Scholar 

  • Hung, S.-H., Dahlen, F., & Nolet, G. (2000). Fréchet kernels for finite-frequency traveltimese II. examples. Geophysical Journal International, 141(1), 175–203.

    Google Scholar 

  • Ishimaru, A. (1978). Wave propagation and scattering in random media (Vol. 2). New York: Academic Press.

    Google Scholar 

  • Kanamori, H., & Anderson, D. L. (1977). Importance of physical dispersion in surface wave and free oscillation problems: Review. Reviews of Geophysics, 15(1), 105–112.

    Google Scholar 

  • Keller, J. (1969). Accuracy and validity of the Born and Rytov approximations. Journal of the Optical Society of America, 59(8), 1003–1004.

    Google Scholar 

  • Kulesh, M., Holschneider, M., Diallo, M., Xie, Q., & Scherbaum, F. (2005). Modeling of wave dispersion using continuous wavelet transforms. Pure and Applied Geophysics, 162(5), 843–855.

    Google Scholar 

  • Larson, E. W., Tromp, J., & Ekström, G. (1998). Effects of slight anisotropy on surface waves. Geophysical Journal International, 132(3), 654–666.

    Google Scholar 

  • Lee, E.-J., & Chen, P. (2013). Automating seismic waveform analysis for full 3-D waveform inversions. Geophysical Journal International, 194(1), 572–589.

    Google Scholar 

  • Lee, W. H., Igel, H., & Trifunac, M. D. (2009a). Recent advances in rotational seismology. Seismological Research Letters, 80(3), 479–490.

    Google Scholar 

  • Lee, W. K., Celebi, M., Todorovska, M., & Igel, H. (2009b). Introduction to the special issue on rotational seismology and engineering applications. Bulletin of the Seismological Society of America, 99(2B), 945–957.

    Google Scholar 

  • Lee, E.-J., Chen, P., Jordan, T. H., & Wang, L. (2011). Rapid full-wave centroid moment tensor (CMT) inversion in a three-dimensional earth structure model for earthquakes in Southern California. Geophysical Journal International, 186(1), 311–330.

    Google Scholar 

  • Lee, E.-J., Chen, P., Jordan, T. H., Maechling, P. B., Denolle, M. A., & Beroza, G. C. (2014). Full-3-D tomography for crustal structure in Southern California based on the scattering-integral and the adjoint-wavefield methods. Journal of Geophysical Research, 119(8), 6421–6451.

    Google Scholar 

  • Liu, Q., & Gu, Y. (2012). Seismic imaging: From classical to adjoint tomography. Tectonophysics, 566, 31–66.

    Google Scholar 

  • Liu, H.-P., Anderson, D. L., & Kanamori, H. (1976). Velocity dispersion due to anelasticity; implications for seismology and mantle composition. Geophysical Journal of the Royal Astronomical Society, 47(1), 41–58.

    Google Scholar 

  • Love, A. (2013). A treatise on the mathematical theory of elasticity. Cambridge: Cambridge University Press.

    Google Scholar 

  • Luo, Y., & Shuster, G. (1991). Wave-equation traveltime inversion. Geophysics, 56(5), 645–653.

    Google Scholar 

  • Maggi, A., Tape, C., Chen, M., Chao, D., & Tromp, J. (2009). An automated time-window selection algorithm for seismic tomography. Geophysical Journal International, 178, 257–281.

    Google Scholar 

  • Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial & Applied Mathematics, 11(2), 431–441.

    Google Scholar 

  • Marquering, H., Dahlen, F., & Nolet, G. (1999). Three-dimensional sensitivity kernels for finitefrequency traveltimes: The banana-doughnut paradox. Geophysical Journal International, 137(3), 805–815.

    Google Scholar 

  • Maupin, V. (1985). Partial derivatives of surface wave phase velocities for flat anisotropic models. Geophysical Journal International, 83(2), 379–398.

    Google Scholar 

  • McGuire, J. J. (2004). Estimating finite source properties of small earthquake ruptures. Bulletin of the Seismological Society of America, 94(2), 377–393.

    Google Scholar 

  • McGuire, J., Zhao, L., & Jordan, T. (2001). Teleseismic inversion for the second-degree moments of earthquake space-time distributions. Geophysical Journal International, 145(3), 661–678.

    Google Scholar 

  • McGuire, J., Zhao, L., & Jordan, T. (2002). Predominance of unilateral rupture for a global catalog of large earthquakes. Bulletin of the Seismological Society of America, 92(8), 3309–3317.

    Google Scholar 

  • Montagner, J.-P., & Nataf, H.-C. (1986). A simple method for inverting the azimuthal anisotropy of surface waves. Journal of Geophysical Research, 91(B1), 511–520.

    Google Scholar 

  • Mori, J. (1996). Rupture directivity and slip distribution of the m 4.3 foreshock to the 1992 joshua tree earthquake, Southern California. Bulletin of the Seismological Society of America, 86(3), 805–810.

    Google Scholar 

  • Mori, J., & Hartzell, S. (1990). Source inversion of the 1988 Upland, California, earthquake: Determination of a fault plane for a small event. Bulletin of the Seismological Society of America, 80(3), 507–518.

    Google Scholar 

  • Nocedal, J., & Wright, S. (2006). Numerical optimization (Springer series in operations research and financial engineering). New York: Springer.

    Google Scholar 

  • Okada, T., Umino, N., Ito, Y., Matsuzawa, T., Hasegawa, A., & Kamiyama, M. (2001). Source processes of 15 september 1998 m 5.0 sendai, Northeastern Japan, earthquake and its m 3.8 foreshock by waveform inversion. Bulletin of the Seismological Society of America, 91(6), 1607–1618.

    Google Scholar 

  • Panning, M. P., & Nolet, G. (2008). Surface wave tomography for azimuthal anisotropy in a strongly reduced parameter space. Geophysical Journal International, 174(2), 629–648.

    Google Scholar 

  • Pratt, R. G. (1999). Seismic waveform inversion in the frequency domain, part 1: Theory and verification in a physical scale model. Geophysics, 64(3), 888–901.

    Google Scholar 

  • Pratt, R. G., & Shipp, R. M. (1999). Seismic waveform inversion in the frequency domain, part 2: Fault delineation in sediments using crosshole data. Geophysics, 64(3), 902–914.

    Google Scholar 

  • Pratt, R. G., Shin, C., & Hick, G. (1998). Gauss–Newton and full Newton methods in frequency–space seismic waveform inversion. Geophysical Journal International, 133(2), 341–362.

    Google Scholar 

  • Press, W. (2007). Numerical recipes 3rd edition: The art of scientific computing. Cambridge: Cambridge University Press.

    Google Scholar 

  • Quackenbush, L. J. (2004). A review of techniques for extracting linear features from imagery. Photogrammetric Engineering & Remote Sensing, 70(12), 1383–1392.

    Google Scholar 

  • Ritsema, J., Rivera, L., Komatitsch, D., Tromp, J., & van Heijst, H. (2002). Effects of crust and mantle heterogeneity on PP/P and SS/S amplitude ratios. Geophysical Rh Letters, 29(10), 72-1.

    Google Scholar 

  • Romanowicz, B., & Snieder, R. (1988). A new formalism for the effect of lateral heterogeneity on normal modes and surface waves-II. general anisotropic perturbation. Geophysical Journal International, 93(1), 91–99.

    Google Scholar 

  • Sieminski, A., Liu, Q., Trampert, J., & Tromp, J. (2007). Finite-frequency sensitivity of surface waves to anisotropy based upon adjoint methods. Geophysical Journal International, 168(3), 1153–1174.

    Google Scholar 

  • Sieminski, A., Trampert, J., & Tromp, J. (2009). Principal component analysis of anisotropic finite-frequency sensitivity kernels. Geophysical Journal International, 179(2), 1186–1198.

    Google Scholar 

  • Sipkin, S. A., & Jordan, T. H. (1980). Multiple ScS travel times in the Western Pacific: Implications for mantle heterogeneity. Journal of Geophysical Research, 85(B2), 853–861.

    Google Scholar 

  • Sirgue, L., & Pratt, R. G. (2004). Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies. Geophysics, 69(1), 231–248.

    Google Scholar 

  • Smith, M. L., & Dahlen, F. (1973). The azimuthal dependence of Love and Rayleigh wave propagation in a slightly anisotropic medium. Journal of Geophysical Research, 78(17), 3321–3333.

    Google Scholar 

  • Snieder, R., & Lomax, A. (1996). Wavefield smoothing and the effect of rough velocity perturbations on arrival times and amplitudes. Geophysical Journal International, 125(3), 796–812.

    Google Scholar 

  • Tape, C., Liu, Q., Maggi, A., & Tromp, J. (2009). Adjoint tomography of the Southern California crust. Science, 325(5943), 988–992.

    Google Scholar 

  • Tarantola, A. (1988). Theoretical background for the inversion of seismic waveforms including elasticity and attenuation. Pure and Applied Geophysics, 128, 365–399.

    Google Scholar 

  • Tatarskiĭ, V., Oceanic, U. S. N., Administration, A., & (U.S.), N. S. F. (1971). The effects of the turbulent atmosphere on wave propagation. Israel Program for Scientific Translations.

    Google Scholar 

  • Thomsen, L. (1986). Weak elastic anisotropy. Geophysics, 51(10), 1954–1966.

    Google Scholar 

  • Tromp, J., Tape, C., & Liu, Q. (2005). Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels. Geophysical Journal International, 160(1), 195–216.

    Google Scholar 

  • Voigt, W. (1928). Lehrbuch der kristallphysik: (mit ausschluss der kristalloptik). B.G. Teubners Sammlung von Lehrbüchern auf dem Gebiete der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen. B. G. Teubner.

    Google Scholar 

  • Woodward, M. (1992a). A qualitative comparison of the first-order Born and Rytov approximations. SEP-60: Stanford exploration project, (pp. 203–214).

    Google Scholar 

  • Woodward, M. J. (1992b). Wave-equation tomography. Geophysics, 57(1), 15–26.

    Google Scholar 

  • Woodward, R., & Masters, G. (1991). Global upper mantle structure from long-period differential travel times. Journal of Geophysical Research, 96(B4), 6351–6377.

    Google Scholar 

  • Wu, R.-S. (1989). The perturbation method in elastic wave scattering. Pure and Applied Geophysics, 131(4), 605–637.

    Google Scholar 

  • Wu, R.-S. (2003). Wave propagation, scattering and imaging using dual-domain one-way and one-return propagators. Pure and Applied Geophysics, 160(3–4), 509–539.

    Google Scholar 

  • Wu, R.-S., & Aki, K. (1988). Introduction: Seismic wave scattering in three-dimensionally heterogeneous earth. Pure and Applied Geophysics, 128(1), 1–6.

    Google Scholar 

  • Xu, Z., Chen, P., & Chen, Y. (2013). Sensitivity kernel for the weighted norm of the frequency-dependent phase correlation. Pure and Applied Geophysics, 170(3), 353–371.

    Google Scholar 

  • Zhang, Z., Shen, Y., & Zhao, L. (2007). Finite-frequency sensitivity kernels for head waves. Geophysical Journal International, 171(2), 847–856.

    Google Scholar 

  • Zhao, L., Jordan, T. H., & Chapman, C. H. (2000). Three-dimensional Fréchet differential kernels for seismic delay times. Geophysical Journal International, 141(3), 558–576.

    Google Scholar 

  • Zhao, L., Jordan, T. H., Olsen, K. B., & Chen, P. (2005). Fréchet kernels for imaging regional earth structure based on three-dimensional reference models. Bulletin of the Seismological Society of America, 95(6), 2066–2080.

    Google Scholar 

  • Zhao, L., Chen, P., & Jordan, T. H. (2006). Strain Green’s tensors, reciprocity, and their applications to seismic source and structure studies. Bulletin of the Seismological Society of America, 96(5), 1753–1763.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Po Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chen, P., Lee, EJ. (2015). Data Sensitivity Kernels. In: Full-3D Seismic Waveform Inversion. Springer Geophysics. Springer, Cham. https://doi.org/10.1007/978-3-319-16604-9_4

Download citation

Publish with us

Policies and ethics