Skip to main content

Orienting Parts with Shape Variation

  • Chapter
  • First Online:
Algorithmic Foundations of Robotics XI

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 107))

Abstract

Industrial parts are manufactured to tolerances as no production process is capable of delivering perfectly identical parts. It is unacceptable that a plan for a manipulation task that was determined on the basis of a CAD model of a part fails on some manufactured instance of that part, and therefore it is crucial that the admitted shape variations are systematically taken into account during the planning of the task. We study the problem of orienting a part with given admitted shape variations by means of pushing with a single frictionless jaw. We use a very general model for admitted shape variations that only requires that any valid instance must contain a given convex polygon \(P_I\) while it must be contained in another convex polygon \(P_E\). The problem that we solve is to determine, for a given \(h\), the sequence of \(h\) push actions that puts all valid instances of a part with given shape variation into the smallest possible interval of final orientations. The resulting algorithm runs in \(O(hn)\) time, where \(n=|P_I|+|P_E|\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Donald, B.R.: Error Detection and Recovery in Robotics. Springer (1987)

    Google Scholar 

  2. Mason, M.T.: Manipulator Grasping and Pushing Operations. Ph.D. thesis, MIT, June 1982. Robot Hands and the Mechanics of Manipulation MIT Press (1985)

    Google Scholar 

  3. Chen, J., Goldberg, K., Overmars, M.H., Halperin, D., B\(\ddot{\rm o}\)hringer, K.-F., Zhuang, Y.: Shape tolerance in feeding and fixturing. In: Agarwal, P.K., Kavraki, L.E., Mason M.T., Peters., A.K. (eds.) Robotics: the algorithmic perspective, pp. 297–311 (1998)

    Google Scholar 

  4. Lavalle, S.M.: Planning Algorithms, chapter 12: Planning Under Sensing Uncertainty. Cambridge University Press (2006)

    Google Scholar 

  5. Dogar, M., Srinivasa, S.S.: A framework for push-grasping in clutter. Robot.: Sci. Syst. 2 (2011)

    Google Scholar 

  6. Requicha, A.A.G.: Toward a theory of geometric tolerancing. Int. J. Robot. Res. 2, (1983)

    Google Scholar 

  7. Voelker, H.: A current perspective on tolerancing and metrology. Manufact. Rev. 6(4) 1993

    Google Scholar 

  8. Lozano-Perez, T., Mason, M.T., Taylor, R.H.: Automatic synthesis of fine-motion strategies for robots. Int. J. Robot. Res. 3(1), 3–24 (1984)

    Article  Google Scholar 

  9. Erdmann, M.A., Mason, M.T.: An exploration of sensorless manipulation. IEEE J. Robot. Autom. 4, 367–379 (1988)

    Article  Google Scholar 

  10. Akella, S., Mason, M.T.: Posing polygonal objects in the plane by pushing. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 2255–2262 (1992)

    Google Scholar 

  11. Goldberg, K.: Orienting polygonal parts without sensors. Algorithmica 10(2), 201–225 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chen, Y.-B., Ierardi, D.J.: The complexity of oblivious plans for orienting and distinguishing polygonal parts. Algorithmica 14, 367–397 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Berretty, R.-P., Overmars, M.H., van der Stappen, A.F.: Orienting polyhedral parts by pushing. Comput. Geom.: Theor. Appl. 21, 21–38 (2002)

    Article  MATH  Google Scholar 

  14. Wiegley, J.A., Goldberg, K., Peshkin, M., Brokowski, M.: A complete algorithm for designing passive fences to orient parts. Assembly Autom. 17(2), 129–136 (1997)

    Article  Google Scholar 

  15. Berretty, R.-P., Goldberg, K., Overmars, M.H., van der Stappen, A.F.: Computing fence designs for orienting parts. Comput. Geom.: Theor. Appl. 10(4), 249–262 (1998)

    Article  MATH  Google Scholar 

  16. Guibas, L., Salesin, D., Stolfi, J.: Epsilon geometry: building robust algorithms for imprecise computations. In: Proceedings of the 5th ACM Annual Symposium on Computational Geometry, pp. 208–217 (1989)

    Google Scholar 

  17. Davoodi, M., Mohades, A.: Data imprecision under \(\lambda \)-geometry: range searching problems. Scientia Iranica 20(3), 663–669 (2013)

    Google Scholar 

  18. Roy, U., Liu, C., Woo, T.: Review of dimensioning and tolerancing. Compu. Aid. Desig. 23(7) (1991)

    Google Scholar 

  19. Panahi, F., van der Stappen, A.F.: Bounding the locus of the center of mass for a part with shape variation. In: Proceedings of the Canadian Conference on Computational Geometry, pp. 247–252 (2013)

    Google Scholar 

  20. Ostrovsky-Berman, Y., Joskowicz, L.: Tolerance envelopes of planar mechanical parts with parametric tolerances. Comput. Aid. Desig. pp. 531–534 (2005)

    Google Scholar 

  21. Bern, M., Eppstein, D., Guibas, L.J., Hershberger, J.E., Suri, S., Wolter, J.: The centroid of points with approximate weights. In: Proceedings of the 3rd European Symposium Algorithms, LNCS 979, pp. 460–472 (1995)

    Google Scholar 

  22. Akella, S., Mason, M.T.: Orienting toleranced polygonal parts. Int. J. Robot. Res. 19(12), 1147–1170 (2000)

    Article  Google Scholar 

  23. Brost, R.C.: Automatic grasp planning in the presence of uncertainty. Int. J. Robot. Res. 7(1), 3–17 (1988)

    Article  Google Scholar 

  24. Kehoe, B., Berenson, D., Goldberg, K.: Toward cloud-based grasping with uncertainty in shape: estimating lower bounds on achieving force closure with zero-slip push grasps. In: Proceedings of the IEEE International Conference on Robotics and Automation (2012)

    Google Scholar 

  25. Giora, Y., Kaplan, H.: Optimal dynamic vertical ray shooting in rectilinear planar subdivisions. In: Proceedings of the 18th ACM-SIAM Symposium on Discrete Algorithms, pp. 19–28 (2007)

    Google Scholar 

  26. Rao, A.S., Goldberg, K.: Manipulating algebraic parts in the plane. IEEE Trans. Robot. Autom. 11(4), 598–602 (1995)

    Article  Google Scholar 

  27. Panahi, F., Davoodi, M., van der Stappen, A.F.: Orienting a part with shape variation Technical Report UUCS-2014-007, Department of Information and Computing Sciences, Utrecht University, Utrecht, The Netherlands (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Panahi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Panahi, F., Davoodi, M., van der Stappen, A.F. (2015). Orienting Parts with Shape Variation. In: Akin, H., Amato, N., Isler, V., van der Stappen, A. (eds) Algorithmic Foundations of Robotics XI. Springer Tracts in Advanced Robotics, vol 107. Springer, Cham. https://doi.org/10.1007/978-3-319-16595-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16595-0_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16594-3

  • Online ISBN: 978-3-319-16595-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics