Skip to main content

Optimal Trajectories for Planar Rigid Bodies with Switching Costs

  • Chapter
  • First Online:
Algorithmic Foundations of Robotics XI

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 107))

Abstract

The optimal trajectory with respect to some metric may require very many switches between controls, or even infinitely many, a phenomenon called chattering; this can be problematic for existing motion planning algorithms that plan using a finite set of motion primitives. One remedy is to add some penalty for switching between controls. This paper explores the implications of this switching cost for optimal trajectories, using rigid bodies in the plane (which have been studied extensively in the cost-free-switch model) as an example system. Blatt’s Indifference Principle (BIP) is used to derive necessary conditions on optimal trajectories; Lipschitzian optimization techniques together with an A* search yield an algorithm for finding trajectories that can arbitrarily approximate the optimal trajectories.

This work was supported in part by NSF grant IIS-0643476.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal, P.K., Biedl, T., Lazard, S., Robbins, S., Suri, S., Whitesides, S.: Curvature-constrained shortest paths in a convex polygon. SIAM J. Comput. 31(6), 1814–1851 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barraquand, J., Latombe, J.-C.: Robot motion planning: a distributed representation approach. Int. J. Robot. Res. 10(6), 628–649 (1991)

    Article  Google Scholar 

  3. Blatt, J.M.: Optimal control with a cost of switching control. J. Aust. Math. Soc. 19, 316–332 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chitsaz, H.R.: Geodesic problems for mobile robots. Ph.D. thesis, University of Illinois at Urbana-Champaign (2008)

    Google Scholar 

  5. Chitsaz, H.R., La Valle, S.M., Balkcom, D.J., Mason, M.T.: Minimum wheel-rotation paths for differential-drive mobile robots. Int. J. Robot. Res. 28(1), 66–80 (2009)

    Article  Google Scholar 

  6. Chyba, M., Haberkorn, T.: Autonomous underwater vehicles: singular extremals and chattering. In: Ceragioli, F., Dontchev, A., Furuta, H., Marti, K., Pandolfi, L. (eds.) Systems, Control, Modeling and Optimization, vol. 202 of IFIP International Federation for Information Processing, pp. 103–113. Springer, Berlin (2006)

    Google Scholar 

  7. Cockayne, E.J., Hall, G.W.C.: Plane motion of a particle subject to curvature constraints. SIAM J. Control 13(1), 197–220 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  8. Desaulniers, G.: On shortest paths for a car-like robot maneuvering around obstacles. Robot. Auton. Syst. 17(3), 139–148 (1996)

    Article  Google Scholar 

  9. Dubins, L.E.: On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. Am. J. Math. 79(3), 497–516 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  10. Furtuna, A.: Minimum time kinematic trajectories for self-propelled rigid bodies in the unobstructed plane. Ph.D. thesis, Dartmouth College, June 2011

    Google Scholar 

  11. Kibalczyc, K., Walczak, S.: Necessary optimality conditions for a problem with costs of rapid variation of control. J. Aust. Math. Soc. 26, 45–55 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  12. Loxton, R., Lin, Q., Lay Teo, K.: Minimizing control variation in nonlinear optimal control. Automatica 49(9), 2652–2664 (2013)

    Article  MathSciNet  Google Scholar 

  13. Lyu, Y.-H., Furtuna, A., Wang, W., Balkcom. D.: The bench mover’s problem: minimum-time trajectories, with cost for switching between controls. In: IEEE International Conference on Robotics and Automation (2014)

    Google Scholar 

  14. Mason, M.T.: Mechanics of Robotic Manipulation. MIT Press, Cambridge (2001)

    Google Scholar 

  15. Matula, J.: On an extremum problem. J. Aust. Math. Soc. 28, 376–392 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  16. Noussair, E.S.: On the existence of piecewise continuous optimal controls. J. Aust. Math. Soc. 20, 31–37 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  17. Pintér, J.D.: Global Optimization in Action: Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications (Nonconvex Optimization and Its Applications, 2nd edn. Springer, Berlin (2010)

    Google Scholar 

  18. Piyavskii, S.A.: An algorithm for finding the absolute minimum of a function. USSR Comput. Math. Math. Phys. 12, 13–24 (1967)

    Google Scholar 

  19. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: Mathematical Theory of Optimal Processes. Wiley, New York (1962)

    MATH  Google Scholar 

  20. Reeds, J.A., Shepp, L.A.: Optimal paths for a car that goes both forwards and backwards. Pac. J. Math. 145(2), 367–393 (1990)

    Article  MathSciNet  Google Scholar 

  21. Reister, D.B., Pin, F.G.: Time-optimal trajectories for mobile robots with two independently driven wheels. Int. J. Robot. Res. 13(1), 38–54 (1994)

    Article  Google Scholar 

  22. Renaud, M., Fourquet, J.-Y.: Minimum time motion of a mobile robot with two independent, acceleration-driven wheels. In: IEEE International Conference on Robotics and Automation, vol. 3, pp. 2608–2613, April 1997

    Google Scholar 

  23. Slotine, J.J., Sastry, S.S.: Tracking control of non-linear systems using sliding surfaces with application to robot manipulators. In: American Control Conference 1983, pp. 132–135, June 1983

    Google Scholar 

  24. Souères, P., Boissonnat, J.-D.: Optimal trajectories for nonholonomic mobile robots. In: Laumond, J.-P. (ed.) Robot Motion Planning and Control, pp. 93–170. Springer, Berlin (1998)

    Chapter  Google Scholar 

  25. Stewart, D.E.: A numerical algorithm for optimal control problems with switching costs. J. Aust. Math. Soc. 34, 212–228 (1992)

    Article  MATH  Google Scholar 

  26. Sussmann, H.J., Tang, G.: Shortest paths for the reeds-shepp car: a worked out example of the use of geometric techniques in nonlinear optimal control. Department of Mathematics, Rutgers University, Technical report (1991)

    Google Scholar 

  27. Teo, K.L., Jennings, L.S.: Optimal control with a cost on changing control. J. Optim. Theory Appl. 68(2), 335–357 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  28. Wang, W., Balkcom, D.: Sampling extremal trajectories for planar rigid bodies. In: Frazzoli, E., Lozano-Perez, T., Roy, N., Rus, D. (eds.) Algorithmic Foundations of Robotics X, vol. 86 of Springer Tracts in Advanced Robotics, pp. 331–347. Springer, Berlin (2013)

    Chapter  Google Scholar 

  29. Wang, W., Balkcom, D.J.: Analytical time-optimal trajectories for an omni-directional vehicle. In: IEEE International Conference on Robotics and Automation, pp. 4519–4524, May 2012

    Google Scholar 

  30. Yu, C., Lay Teo, K., Tiow Tay, T.: Optimal control with a cost of changing control. In: Australian Control Conference, pp. 20–25, Nov 2013

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Han Lyu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lyu, YH., Balkcom, D. (2015). Optimal Trajectories for Planar Rigid Bodies with Switching Costs. In: Akin, H., Amato, N., Isler, V., van der Stappen, A. (eds) Algorithmic Foundations of Robotics XI. Springer Tracts in Advanced Robotics, vol 107. Springer, Cham. https://doi.org/10.1007/978-3-319-16595-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16595-0_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16594-3

  • Online ISBN: 978-3-319-16595-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics