Skip to main content

Asymptotically Optimal Stochastic Motion Planning with Temporal Goals

  • Chapter
  • First Online:
Book cover Algorithmic Foundations of Robotics XI

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 107))

Abstract

This work presents a planning framework that allows a robot with stochastic action uncertainty to achieve a high-level task given in the form of a temporal logic formula. The objective is to quickly compute a feedback control policy to satisfy the task specification with maximum probability. A top-down framework is proposed that abstracts the motion of a continuous stochastic system to a discrete, bounded-parameter Markov decision process (bmdp), and then computes a control policy over the product of the bmdp abstraction and a dfa representing the temporal logic specification. Analysis of the framework reveals that as the resolution of the bmdp abstraction becomes finer, the policy obtained converges to optimal. Simulations show that high-quality policies to satisfy complex temporal logic specifications can be obtained in seconds, orders of magnitude faster than existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Form. Methods Syst. Des. 19(3), 291–314 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  3. Fainekos, G.E., Kress-Gazit, H., Pappas, G.J.: Temporal logic motion planning for mobile robots. In: IEEE International Conference on Robotics and Automation, pp. 2020–2025 (2005)

    Google Scholar 

  4. Gazit, H.K., Fainekos, G., Pappas, G.J.: Where’s Waldo? Sensor-based temporal logic motion planning. In: IEEE International Conference on Robotics and Automation, pp. 3116–3121 (2007)

    Google Scholar 

  5. Kloetzer, M., Belta, C.: A fully automated framework for control of linear systems from temporal logic specifications. IEEE Trans. Autom. Control 53(1), 287–297 (2008)

    Article  MathSciNet  Google Scholar 

  6. Wongpiromsarn, T., Topcu, U., Murray, R.M.: Receding horizon control for temporal logic specifications. In: International Conference on Hybrid Systems: Computation and Control, pp. 101–110 (2010)

    Google Scholar 

  7. Bhatia, A., Kavraki, L., Vardi, M.: Motion planning with hybrid dynamics and temporal goals. In: IEEE Conference on Decision and Control, pp. 1108–1115 (2010)

    Google Scholar 

  8. Bhatia, A., Maly, M., Kavraki, L., Vardi, M.: Motion planning with complex goals. IEEE Robot. Autom. Mag. 18(3), 55–64 (2011)

    Article  Google Scholar 

  9. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning with deterministic \(\mu \)-calculus specifications. In: American Control Conference, pp. 735–742 (2012)

    Google Scholar 

  10. Plaku, E., Kavraki, L.E., Vardi, M.Y.: Falsification of LTL safety properties in hybrid systems. Softw. Tools Technol. Transf. 15(4), 305–320 (2013)

    Article  Google Scholar 

  11. Alterovitz, R., Siméon, T., Goldberg, K.: The stochastic motion roadmap: a sampling framework for planning with Markov motion uncertainty. In: Robotics: Science and Systems, pp. 246–253 (2007)

    Google Scholar 

  12. Huynh, V.A., Karaman, S., Frazzoli, E.: An incremental sampling-based algorithm for stochastic optimal control. In: IEEE International Conference on Robotics and Automation, pp. 2865–2872 (2012)

    Google Scholar 

  13. Luna, R., Lahijanian, M., Moll, M., Kavraki, L.E.: Fast stochastic motion planning with optimality guarantees using local policy reconfiguration. In: IEEE International Conference on Robotics and Automation, pp. 3013–3019 (2014)

    Google Scholar 

  14. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)

    Google Scholar 

  15. Kress-Gazit, H., Wongpiromsarn, T., Topcu, U.: Correct, reactive robot control from abstraction and temporal logic specifications. IEEE Robot. Autom. Mag. 18(3), 65–74 (2011)

    Article  Google Scholar 

  16. Ding, X.C., Kloetzer, M., Chen, Y., Belta, C.: Formal methods for automatic deployment of robotic teams. IEEE Robot. Autom. Mag. 18(3), 75–86 (2011)

    Article  Google Scholar 

  17. DeCastro, J.A., Kress-Gazit, H.: Guaranteeing reactive high-level behaviors for robots with complex dynamics. In: IEEE/RSJ International Conference on Intelligent Robotics and Systems, pp. 749–756 (2013)

    Google Scholar 

  18. Vasile, C., Belta, C.: Sampling-based temporal logic path planning. In: IEEE/RSJ International Conference on Intelligent Robotics and Systems, pp. 4817–4822 (2013)

    Google Scholar 

  19. Maly, M.R., Lahijanian, M., Kavraki, L.E., Kress-Gazit, H., Vardi, M.Y.: Iterative temporal motion planning for hybrid systems in partially unknown environments. In: International Conference on Hybrid Systems: Computation and Control, pp. 353–362 (2013)

    Google Scholar 

  20. Ding, X.C., Smith, S.L., Belta, C., Rus, D.: MDP optimal control under temporal logic constraints. In: IEEE Conference on Decision and Control, pp. 532–538 (2011)

    Google Scholar 

  21. Lahijanian, M., Andersson, S.B., Belta, C.: Temporal logic motion planning and control with probabilistic satisfaction guarantees. IEEE Trans. Robot. 28(2), 396–409 (2012)

    Article  Google Scholar 

  22. Wolff, E.M., Topcu, U., Murray, R.M.: Robust control of uncertain Markov decision processes with temporal logic specifications. In: IEEE Conference on Decision and Control, pp. 3372–3379 (2012)

    Google Scholar 

  23. Givan, R., Leach, S., Dean, T.: Bounded-parameter Markov decision processes. Artif. Intell. 122, 71–109 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. Luna, R., Lahijanian, M., Moll, M., Kavraki, L.E.: Optimal and efficient stochastic motion planning in partially-known environments. In: AAAI Conference on Artificial Intelligence (2014)

    Google Scholar 

  25. Kushner, H.J., Dupuis, P.: Numerical Methods for Stochastic Control Problems in Continuous Time, vol. 24. Springer, New York (2001)

    Google Scholar 

  26. Shewchuk, J.R.: Delaunay refinement algorithms for triangular mesh generation. Comput. Geom. 22(1–3), 21–74 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Springer, New York (1976)

    Google Scholar 

  28. Duret-Lutz, A., Poitrenaud, D.: Spot: an extensible model checking library using transition-based generalized Büchi automata. In: IEEE/ACM International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, pp. 76–83 (2004)

    Google Scholar 

  29. de Alfaro, L.: Formal Verification of Probabilistic Systems. Ph.D. thesis, Stanford University (1997)

    Google Scholar 

  30. Wu, D., Koutsoukos, X.: Reachability analysis of uncertain systems using bounded-parameter Markov decision processes. Artif. Intell. 172(8–9), 945–954 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  31. Freidlin, M.: Functional Integration and Partial Differential Equations. Princeton University Press, Princeton (1985)

    Google Scholar 

Download references

Acknowledgments

Work by Ryan Luna is supported by a NASA Space Technology Research Fellowship. Work by Morteza Lahijanian, Mark Moll, and Lydia Kavraki is supported in part by NSF NRI 1317849, NSF 1139011, and NSF CCF 1018798. Computing resources supported in part by NSF CNS 0821727.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lydia E. Kavraki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Luna, R., Lahijanian, M., Moll, M., Kavraki, L.E. (2015). Asymptotically Optimal Stochastic Motion Planning with Temporal Goals. In: Akin, H., Amato, N., Isler, V., van der Stappen, A. (eds) Algorithmic Foundations of Robotics XI. Springer Tracts in Advanced Robotics, vol 107. Springer, Cham. https://doi.org/10.1007/978-3-319-16595-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16595-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16594-3

  • Online ISBN: 978-3-319-16595-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics