Skip to main content

Co-extruded Multilayer Polymer Films for Photonic Applications

  • Chapter
Organic and Hybrid Photonic Crystals

Abstract

Co-extrusion through a series of layer-multiplying die elements enables the production of polymer films containing tens to thousands of layers with individual layer thicknesses from the micro- to the nanoscale. The use of polymers with different refractive indexes allows to fabricate, with a simple and inexpensive process, narrowband one-dimensional photonic crystals. Tunability of the photonic gap can be achieved by proper choice of the materials or of the dies, varying the contrast in refractive indexes or the number and thickness of the individual layers. The use of elastomeric polymers offers the opportunity to modify the UV–VIS spectral response of the 1-D photonic crystals simply by deformation of the film. Finally, co-extrusion of multi-layer polymeric films revealed to be an enabling technology, which allows the realization of new polymeric optical devices, going from flexible lasers to gradient refractive index lenses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.D. Mueller, S. Nazarenko, T. Ebeling et al., Polym. Eng. Sci. 37, 355 (1997)

    Article  Google Scholar 

  2. R.Y.F. Liu, Y. Jin, A. Hiltner et al., Macromol. Rapid Commun. 24, 943 (2003)

    Article  Google Scholar 

  3. H. Wang, J.K. Keum, A. Hiltner et al., Science 323, 757 (2009)

    Article  Google Scholar 

  4. J.C. Van Der Hoeven, R. Wimberger-Friedl, H.E.H. Meijer, Polym. Eng. Sci. 41, 32 (2001)

    Article  Google Scholar 

  5. R. Sluijters, Mixer. U.S. Patent 3,182,965, 1965

    Google Scholar 

  6. R. Wimberger-Friedl, J.W. Mulder, J.G. De Bruin, Method for producing a grid structure. U.S. Patent 6,707,885 B2, 2004

    Google Scholar 

  7. J. Dooley, Viscoelastic Flow Effects in Multilayer Polymer Coextrusion. Ph.D. Thesis, Eindhoven University of Technology, The Netherlands, 2002

    Google Scholar 

  8. P.C. Lee, J. Dooley, J. Plast. Film Sheeting 29, 78 (2013)

    Article  Google Scholar 

  9. C.D. Han, R. Shetty, Studies on multilayer film coextrusion II. Interfacial instability in flat film coextrusion. Polym. Eng. Sci. 18(3), 180–186 (1978)

    Article  Google Scholar 

  10. W.J. Schrenk, N.L. Bradley, T. Alfrey et al., Polym. Eng. Sci. 18, 620 (1978)

    Article  Google Scholar 

  11. T. Inomoto, T. Kajiwara, J. Soc. Rheol. Jpn. 37, 91 (2009)

    Article  Google Scholar 

  12. P. Yue, C. Zhou, J. Dooley et al., J. Rheol. 52, 1027 (2008)

    Article  Google Scholar 

  13. L. Rayleigh, Philos. Mag. 34, 145 (1892)

    Article  Google Scholar 

  14. M. Ponting, A. Hiltner, E. Baer, Macromol. Symp. 294, 19 (2010)

    Article  Google Scholar 

  15. J.D. Joannopulos, R.D. Meade, J.N. Win, Photonic Crystals: Molding the Flow of the Light (Princeton University Press, Princeton, 1995)

    Google Scholar 

  16. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987)

    Article  Google Scholar 

  17. S. John, Phys. Rev. Lett. 58, 2486 (1987)

    Article  Google Scholar 

  18. V. Morandi, F. Marabelli, V. Amendola et al., Adv. Funct. Mater. 17, 2779 (2007)

    Article  Google Scholar 

  19. V. Morandi, F. Marabelli, V. Amendola et al., J. Phys. Chem. C 112, 6293 (2008)

    Article  Google Scholar 

  20. T. Alfrey, E.F. Gurnee, W. Schrenk, J. Polym. Eng. Sci. 9, 400 (1969)

    Article  Google Scholar 

  21. J.A. Radford, T. Alfrey, W. Schrenk, J. Polym. Eng. Sci. 13, 216 (1973)

    Article  Google Scholar 

  22. T. Kazmierczak, H. Song, A. Hiltner et al., Macromol. Rapid Commun. 28, 2210 (2007)

    Article  Google Scholar 

  23. A. Vasicek, Optics of Thin Films, 1st edn. (North-Holland Publishing Co., Amsterdam, 1960)

    Google Scholar 

  24. H. Song, K. Singer, Y. Wu et al., Layered polymeric optical systems using continuous coextrusion. Proc. SPIE 7467, 74670A (2009)

    Article  Google Scholar 

  25. K. Stoeffler, C. Dubois, A. Ajji et al., Polym. Eng. Sci. 50, 1122 (2010)

    Article  Google Scholar 

  26. K.D. Singer, T. Kazmierczak, J. Lott et al., Opt. Exp. 16, 10358 (2008)

    Article  Google Scholar 

  27. G. Canazza, F. Scotognella, G. Lanzani et al., Laser Phys. Lett. 11, 035804 (2014)

    Article  Google Scholar 

  28. G. Mao, J. Andrews, M. Crescimanno et al., Opt. Mater. Exp. 1, 108 (2011)

    Article  Google Scholar 

  29. Y. Wu, K.D. Singer, R.G. Petschek et al., Opt. Exp. 17, 18038 (2009)

    Article  Google Scholar 

  30. H. Song, K. Singer, J. Lott et al., J. Mater. Chem. 19, 7520 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Cavallo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cavallo, D., Goossens, H., Meijer, H.E.H. (2015). Co-extruded Multilayer Polymer Films for Photonic Applications. In: Comoretto, D. (eds) Organic and Hybrid Photonic Crystals. Springer, Cham. https://doi.org/10.1007/978-3-319-16580-6_7

Download citation

Publish with us

Policies and ethics