Skip to main content

Spin-Coated Polymer and Hybrid Multilayers and Microcavities

  • Chapter
Organic and Hybrid Photonic Crystals

Abstract

Polymer multilayer structures have attracted increasing attention in the recent years because of the straightforward and low-cost techniques that can be used for their fabrication. When the multilayers are composed of a periodical alternation of two materials with different refractive indexes and with layer thicknesses comparable with the wavelength of light, they take the name of distributed Bragg reflectors (DBR). They behave like planar one-dimensional photonic crystals (PhC) and exhibit a photonic band gap (PBG), a spectral region in which photons with suitable energy and wave vector are not allowed to propagate through the crystal. Moreover, within the PBG and at its edges, modifications of radiative photophysical processes occur. The spectral position, efficiency and linewidth of the PBG can be engineered by modifying the layer thicknesses and the refractive indexes of the two materials. While DBRs grown using inorganic materials are well known, polymer and colloidal particle DBRs are receiving a renewed interest due to the possibility to chemically engineer their structural properties and photonic functions; moreover, they can be free-standing and flexible thus being adaptable to any surface. Furthermore, polymers and porous structures can easily embed many other active materials, paving the way to a myriad of applications. In this chapter, we introduce polymer multilayers and planar microcavities fabricated using the spin coating technique, discussing the different materials employed and manufacturing challenges. We will also review different applications that exploit these kinds of photonic structures ranging from lasing to sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Yablonovitch, Phys. Rev. Lett. 58 (1987)

    Google Scholar 

  2. S. John, Phys. Rev. Lett. 58 (1987)

    Google Scholar 

  3. G. Canazza et al., Laser Phys. Lett. 11, 035804 (2014)

    Article  Google Scholar 

  4. F. Scotognella et al., Small 5, 2048 (2009)

    Article  Google Scholar 

  5. V.M. Menon et al., Opt. Express 16, 19535 (2008)

    Article  Google Scholar 

  6. L.M. Goldenberg, V. Lisinetskii, S. Schrader, Laser Phys. Lett. 10, 055808 (2013)

    Article  Google Scholar 

  7. S. Colodrero, et al., Adv. Mater. 21 (2009)

    Google Scholar 

  8. P. Lova, et al. ACS Photonics, 2, 537 (2015)

    Google Scholar 

  9. P. Lova, et al. Phys. Status Solidi C 12, 158 (2015)

    Google Scholar 

  10. F. Scotognella et al., Phys. Chem. Chem. Phys. 12, 337 (2010)

    Article  Google Scholar 

  11. J.D. Joannopulos, R.D. Meade, J.N. Win, Photonic Crystals: Molding the Flow of the Light (Princeton University Press, Princeton, 1995)

    Google Scholar 

  12. E. Hecht, Optics (Addison-Wesley, Reading, 2002)

    Google Scholar 

  13. G. Lanzani, Photophysics of Molecular Materials: From Single Molecules to Single Crystals (Wiley, New York, 2006)

    Google Scholar 

  14. P. Samorì, F. Cacialli, Functional Supramolecular Architectures: For Organic Electronics and Nanotechnology, 2 Volume Set (Wiley, Weinheim, 2014)

    Google Scholar 

  15. A. Convertino et al., Appl. Phys. Lett. 71, 732 (1997)

    Article  Google Scholar 

  16. A. Convertino, A. Valentini, R. Cingolani, Appl. Phys. Lett. 75, 322 (1999)

    Article  Google Scholar 

  17. J.-H. Lee, et al., Adv. Mater. 26 (2014)

    Google Scholar 

  18. F.M. Hinterholzinger et al., J. Mater. Chem. 22, 10356 (2012)

    Article  Google Scholar 

  19. C. Park, J. Yoon, E.L. Thomas, Polymer 44, 6725 (2003)

    Article  Google Scholar 

  20. G. Mao, et al., Opt. Mater. Express 1 (2011)

    Google Scholar 

  21. H. Song et al., J. Mater. Chem. 19, 7520 (2009)

    Article  Google Scholar 

  22. T. Komikado, S. Yoshida, S. Umegaki, Appl. Phys. Lett. 89, 061123 (2006)

    Article  Google Scholar 

  23. L.M. Goldenberg et al., Opt. Mater. Express 2, 11 (2012)

    Article  Google Scholar 

  24. N.V. Valappil et al., Photonic Nanostruct. 5, 184 (2007)

    Article  Google Scholar 

  25. F. Scotognella et al., Int. J. Photoenergy 2008, 389034 (2008)

    Article  Google Scholar 

  26. L. Frezza et al., J. Phys. Chem. C 115, 19939 (2011)

    Article  Google Scholar 

  27. L. Fornasari et al., Appl. Phys. Lett. 105, 053303 (2014)

    Article  Google Scholar 

  28. A.L. Álvarez, et al., Thin Solid Films 433 (2003)

    Google Scholar 

  29. M.E. Calvo et al., Energy Environ. Sci. 4, 4800 (2011)

    Article  Google Scholar 

  30. S. Colodrero et al., Langmuir 24, 9135 (2008)

    Article  Google Scholar 

  31. D.P. Puzzo et al., Nanoletters 9, 4273 (2009)

    Article  Google Scholar 

  32. F. Scotognella et al., Chem. Mater. 23, 805 (2011)

    Article  Google Scholar 

  33. A.C. Arsenault et al., Macromol. Symp. 196, 63 (2003)

    Article  Google Scholar 

  34. L. Criante, F. Scotognella, J. Phys. Chem. C 116, 21572 (2012)

    Article  Google Scholar 

  35. R.K. Yonkoski, D.S. Soane, J. Appl. Phys. 72, 725 (1992)

    Article  Google Scholar 

  36. A. Bolognesi, et al., Langmuir 21 (2005)

    Google Scholar 

  37. C.-C. Chang et al., Thin Solid Films 479, 254 (2005)

    Article  Google Scholar 

  38. C.J. Lawrence, Phys. Fluids 31, 2786 (1988)

    Article  Google Scholar 

  39. P. Yimsiri, M.R. Mackley, Chem. Eng. Sci. 61, 3496 (2006)

    Article  Google Scholar 

  40. K. Norrman, A. Ghanbari-Siahkali, N.B. Larsen, Annu. Rep. Prog. Chem. Sect. C Phys. Chem. 101, 174 (2005)

    Article  Google Scholar 

  41. D. Meyerhofer, J. Appl. Phys. 49, 3993 (1978)

    Article  Google Scholar 

  42. J.J. Cras et al., Biosens. Bioelectron. 14, 683 (1999)

    Article  Google Scholar 

  43. L. Henke, N. Nagy, U.J. Krull, Biosens. Bioelectron. 17, 547 (2002)

    Article  Google Scholar 

  44. R.R.K. Unger, C. Czibula, C. Ganser, C. Teichert, G. Jakopic, G. Canazza, S. Gazzo, D. Comoretto, in Distributed Bragg Reflectors: Morphology of Cellulose Acetate and Polystyrene Multilayer. 16th International Conference on Transparent Optical Networks (ICTON), Graz (AUT), 6–10 July 2014. IEEE Xplore Digital Library

    Google Scholar 

  45. T. Komikado et al., Thin Solid Films 515, 3887 (2007)

    Article  Google Scholar 

  46. M. Montalti, A. Credi, L. Prodi, M.T. Gandolfi, Photophysical properties of organic compounds, in Handbook of Photochemistry, 3rd edn. (CRC, Boca Raton, 2006), pp. 83–351

    Google Scholar 

  47. V. Morandi et al., Adv. Funct. Mater. 17, 2779 (2007)

    Article  Google Scholar 

  48. M. Born, E. Wolf, Principles of Optics, 6th edn. (with corrections) (Pergamon Press, Oxford, 1980)

    Google Scholar 

  49. J.P. Dowling, et al., J. Appl. Phys. 75 (1994)

    Google Scholar 

  50. V. Morandi et al., J. Phys. Chem. C 112, 6293 (2008)

    Article  Google Scholar 

  51. N. Tessler, G.J. Denton, R.H. Friend, Nature 382, 695 (1996)

    Article  Google Scholar 

  52. M. Barth, A. Gruber, F. Cichos, Phys. Rev. B 72, 085129 (2005)

    Article  Google Scholar 

  53. P. Bermel, et al., Opt. Express 15 (2007)

    Google Scholar 

  54. S. Colodrero, et al., J. Phys. Chem. C 113 (2009)

    Google Scholar 

  55. L.P. Heiniger et al., Adv. Mater. 25, 5734 (2013)

    Article  Google Scholar 

  56. D.E. Lucchetta, L. Criante, F. Simoni, J. Appl. Phys. 93 (2003)

    Google Scholar 

  57. A.C. Arsenault, et al., Nat Photon 1 (2007)

    Google Scholar 

  58. D.P. Puzzo et al., Angew. Chem. Int. Ed. 48, 943 (2009)

    Article  Google Scholar 

  59. S.Y. Choi et al., Nano Lett. 6, 2456 (2006)

    Article  Google Scholar 

  60. C.-Y. Kuo, et al., Sens. Actuators B Chem. 124 (2007)

    Google Scholar 

  61. M. Ben-Moshe, V.L. Alexeev, S.A. Asher, Anal. Chem. 78 (2006)

    Google Scholar 

  62. T. Cassagneau, F. Caruso, Adv. Mater. 14, 34 (2002)

    Article  Google Scholar 

  63. L.D. Bonifacio et al., Adv. Mater. 22, 1351 (2010)

    Article  Google Scholar 

  64. J.-T. Zhang, N. Smith, S.A. Asher, Anal. Chem. 84, 6416 (2012)

    Article  Google Scholar 

  65. X. Xu, A.V. Goponenko, S.A. Asher, J. Am. Chem. Soc. 130 (2008)

    Google Scholar 

  66. S.A.A. Michelle M. Ward Muscatello, Adv. Funct. Mater. 18 (2008)

    Google Scholar 

  67. S.A. Asher, K.W. Kimble, J.P. Walker, Chem. Mater. 20 (2008)

    Google Scholar 

  68. L. Nicolais et al., Polymer 18, 1137 (1977)

    Article  Google Scholar 

  69. M. Liscidini et al., Appl. Phys. Lett. 98, 121118 (2011)

    Article  Google Scholar 

  70. M. Liscidini, J.E. Sipe, Appl. Phys. Lett. 91 (2007)

    Google Scholar 

  71. S. Pirotta et al., Appl. Phys. Lett. 104, 051111 (2014)

    Article  Google Scholar 

  72. H. Clevenson et al., Appl. Phys. Lett. 104, 241108 (2014)

    Article  Google Scholar 

  73. R. Badugu et al., Anal. Biochem. 442, 83 (2013)

    Article  Google Scholar 

  74. A.T. Exner, et al., ACS Appl. Mater. Interfaces 5 (2013)

    Google Scholar 

  75. I. Pavlichenko, et al., J. Intell. Mat. Syst. Struct. 24, 2204 (2013)

    Google Scholar 

  76. L.D. Bonifacio, G.A. Ozin, A.C. Arsenault, Small 7, 3153 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The work in Genova is supported by the Italian Ministry of University and Scientific and Technological Research through the project 2010XLLNM3 (PRIN 2010–2011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Francesco Scotognella or Davide Comoretto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Scotognella, F. et al. (2015). Spin-Coated Polymer and Hybrid Multilayers and Microcavities. In: Comoretto, D. (eds) Organic and Hybrid Photonic Crystals. Springer, Cham. https://doi.org/10.1007/978-3-319-16580-6_4

Download citation

Publish with us

Policies and ethics