Skip to main content

New Sensing Strategies Based on Surface Modes in Photonic Crystals

  • Chapter

Abstract

During the past decade the investigations on the use of optical nanostructures for sensing applications have become an active area of research. The near-field interactions of sensed analytes with optical modes sustained by photonic crystals have resulted in a general increase of the detection performances, both in labelled and label-free configurations. As a particular case, one-dimensional photonic crystals (1DPC) represents an interesting opportunity for enhancing the light–matter interaction mediated by Bloch Surface Waves (BSWs). In this chapter we introduce the concept of surface modes on planar and corrugated 1DPC based on dielectric stratified structures providing several illustrative examples in sensing applications. The use of 1DPC surface modes as optical transducers presents some advantages, such as spectral and polarization tunability and low losses. Moreover, functionalizing layers tailored for specific applications can be included within the definition of the photonic crystal itself, thus leading to hybrid organic/inorganic structures. Some recent advances on the use of a photonic crystal platform for biosensing applications are presented and discussed, including label-free and improved fluorescence-based approaches wherein the intimate coupling of organic emitters to BSWs can be fruitfully exploited.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. C.M. Soukoulis, Photonic Band Gap Materials (Kluwer, Dordrecht, 1996)

    Book  Google Scholar 

  2. L.C. Andreani, M. Liscidini, Photonic crystals: an introductory survey, in Organic and Hybrid Photonic Crystals, ed. by D. Comoretto (New York, Springer, 2015)

    Google Scholar 

  3. J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995)

    Google Scholar 

  4. J.M. Elson, P. Tran, Phys. Rev. B 54, 1711 (1996)

    Article  Google Scholar 

  5. W.M. Robertson, G. Arjavalingam, R.D. Meade, K.D. Brommer, A.M. Rappe, J.D. Joannopoulos, Opt. Lett. 18, 528 (1993)

    Article  Google Scholar 

  6. P. Yeh, A. Yariv, A.Y. Cho, Appl. Phys. Lett. 32, 104 (1978)

    Article  Google Scholar 

  7. E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H.P. Herzig, O.J.F. Martin, F. Giorgis, Nano Lett. 10, 2087 (2010)

    Article  Google Scholar 

  8. A. Farmer, A.C. Friedli, S.M. Wright, W.M. Robertson, Sens. Actuators B 173, 79 (2012)

    Article  Google Scholar 

  9. J. Gao, A. Sarangan, Q. Zhan, Opt. Lett. 37, 2640 (2012)

    Article  Google Scholar 

  10. M. Shinn, W.M. Robertson, Sens. Actuators B 105, 360 (2005)

    Article  Google Scholar 

  11. P. Rivolo, F. Michelotti, F. Frascella, G. Digregorio, P. Mandracci, L. Dominici, F. Giorgis, E. Descrovi, Sens. Actuators B 161, 1046 (2012)

    Article  Google Scholar 

  12. E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, F. Michelotti, Appl. Phys. Lett 91, 241109 (2007)

    Article  Google Scholar 

  13. F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, F. Geobaldo, Phys. Chem. Chem. Phys 12, 502 (2009)

    Article  Google Scholar 

  14. A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, F. Michelotti, Sens. Actuators B 174, 292 (2012)

    Article  Google Scholar 

  15. A. Sinibaldi, E. Descrovi, F. Giorgis, L. Dominici, M. Ballarini, P. Mandracci, N. Danz, F. Michelotti, Biomed. Opt. Express 3, 2405 (2012)

    Article  Google Scholar 

  16. Y.H. Li, T.L. Yang, S.M. Song, Z.Y. Pang, G.Q. Du, S.H. Han, Appl. Phys. Lett. 103, 041116 (2013)

    Article  Google Scholar 

  17. Y. Li, T. Yang, Z. Pang, G. Du, S. Song, S. Han, Opt. Express 22, 21403 (2014)

    Article  Google Scholar 

  18. M. Liscidini, M. Galli, M. Patrini, R. Loo, C. Goh, C. Ricciardi, F. Giorgis, J.E. Sipe, Appl. Phys. Lett. 94, 043117 (2009)

    Article  Google Scholar 

  19. S. Pirotta, X.G. Xu, A. Delfan, S. Mysore, S. Maiti, G. Dacarro, M. Patrini, M. Galli, G. Guizzetti, D. Bajoni, J.E. Sipe, G.C. Walker, M. Liscidini, J. Phys. Chem. C 117, 6821 (2013)

    Article  Google Scholar 

  20. I.V. Soboleva, E. Descrovi, C. Summonte, A.A. Fedyanin, F. Giorgis, Appl. Phys. Lett. 94, 231122 (2009)

    Article  Google Scholar 

  21. M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, E. Descrovi, Appl. Phys. Lett. 99, 043302 (2011)

    Article  Google Scholar 

  22. L. Yu, E. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, H.P. Herzig, Light Sci. Appl. 3, 124 (2014)

    Article  Google Scholar 

  23. M. Ballarini, F. Frascella, N. De Leo, S. Ricciardi, P. Rivolo, P. Mandracci, E. Enrico, F. Giorgis, F. Michelotti, E. Descrovi, Opt. Express 20, 6703 (2012)

    Article  Google Scholar 

  24. E. Descrovi, D. Morrone, A. Angelini, F. Frascella, S. Ricciardi, P. Rivolo, N. De Leo, L. Boarino, P. Munzert, F. Michelotti, F. Giorgis, Eur. Phys. J. D 68, 53 (2014)

    Article  Google Scholar 

  25. F. Giorgis, P. Mandracci, L. Dal Negro, C. Mazzoleni, L. Pavesi, J. Non-Crystalline Solids 266–269, 588 (2000)

    Article  Google Scholar 

  26. E. Descrovi, F. Giorgis, L. Dominici, F. Michelotti, Opt. Lett. 33, 243 (2008)

    Article  Google Scholar 

  27. L. Li, G. Granet, J.P. Plumey, J. Chandezon, Publ. Astron. Soc. Jpn. 5, 141 (1996)

    Google Scholar 

  28. B. Liedberg, C. Nylander, I. Lundstroem, Biosens. Bioelectron. 10, i–ix (1995)

    Google Scholar 

  29. M. Piliarik, J. Homola, Opt. Express 17, 16505 (2009)

    Article  Google Scholar 

  30. N. Danz, A. Kick, F. Sonntag, S. Schmieder, B. Höfer, U. Klotzbach, M. Mertig, Eng. Life Sci. 11, 566 (2011)

    Article  Google Scholar 

  31. P. Yeh, A. Yariv, C.-S. Hong, J. Opt. Soc. Am. 67, 423–438 (1977)

    Article  Google Scholar 

  32. F. Giorgis, E. Descrovi, C. Summonte, L. Dominici, F. Michelotti, Opt. Express 18, 8087 (2010)

    Article  Google Scholar 

  33. A. Bernard, E. Delamarche, H. Schmid, B. Michel, H.R. Bosshard, H. Biebuyck, Langmuir 14, 2225 (1998)

    Article  Google Scholar 

  34. F. Michelotti, L. Dominici, E. Descrovi, N. Danz, F. Menchini, Opt. Lett. 34, 839–841 (2009)

    Article  Google Scholar 

  35. J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd edn. (Springer, New York, 2006)

    Book  Google Scholar 

  36. J. Dostalek, W. Knoll, Biointerphases 3, Fd12–Fd22 (2008)

    Google Scholar 

  37. K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, J. Dostálek, Biosens. Bioelectron. 43, 108 (2013)

    Article  Google Scholar 

  38. F. Frascella, C. Ricciardi, Functionalization protocols of silicon micro/nano-mechanical biosensors, in Nanomaterial Interfaces in Biology (Springer, Berlin, 2013), pp. 109–115

    Google Scholar 

  39. E. Descrovi, F. Frascella, M. Ballarini, V. Moi, A. Lamberti, F. Michelotti, F. Giorgis, C.F. Pirri, Appl. Phys. Lett. 101, 131105 (2012)

    Article  Google Scholar 

  40. F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, F. Giorgis, F. Bussolino, E. Descrovi, Sensors 13, 2011 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The research described above has been developed with noticeable contributions and fruitful discussions involving several researchers and students. In particular, Prof. Francesco Michelotti, Prof. Joseph R. Lakowicz, Prof. Hans Peter Herzig, Prof. Federico Bussolino, Prof. Fabrizio Pirri, Dr. Peter Munzert, Dr. Jakub Dostalek, Dr. Francesca Frascella, Dr. Serena Ricciardi, Dr. Mirko Ballarini, Dr. Pietro Mandracci, Dr. Alessandro Chiadò, Dr. Alessandro Virga, Dr. Lucia Napione, Dr. Angelica Chiodoni, Dr. Emanuele Enrico, Dr. Lorenzo Dominici, Mr. Angelo Angelini, and Ms. Valeria Moi are gratefully acknowledged.

We acknowledge the collaboration with NanoFacility Piemonte, INRiM, a laboratory supported by Compagnia di San Paolo. This research has received funding from the EU FP7 project BILOBA (Grant #318035), the Italian Flagship Project NANOMAX (Progetto Bandiera MIUR PNR 2011–2013), the Italian FIRB 2011 NEWTON (RBAP11BYNP), and the Piedmont Regional Project CIPE 2008 PHOENICS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Giorgis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Descrovi, E., Rivolo, P., Boarino, L., De Leo, N., Giorgis, F. (2015). New Sensing Strategies Based on Surface Modes in Photonic Crystals. In: Comoretto, D. (eds) Organic and Hybrid Photonic Crystals. Springer, Cham. https://doi.org/10.1007/978-3-319-16580-6_14

Download citation

Publish with us

Policies and ethics