Skip to main content

Part of the book series: Cancer Treatment and Research ((CTAR,volume 166))

Abstract

Disease heterogeneity within and between patients necessitates a patient-focused approach to cancer treatment. This exigency forms the basis for the medical practice termed personalized medicine. An emerging, important component of personalized medicine is theranostics. Theranostics describes the co-delivery of therapeutic and imaging agents in a single formulation. Co-delivery enables noninvasive, real-time visualization of drug fate, including drug pharmacokinetic and biodistribution profiles and intratumoral accumulation. These technological advances assist drug development and ultimately may translate to improved treatment planning at the bedside. Nanocarriers are advantageous for theranostics as their size and versatility enables integration of multiple functional components in a single platform. This chapter focuses on recent developments in advanced lipid theranostic nanomedicine from the perspective of the “all-in-one” or the “one-for-all” approach. The design paradigm of “all-in-one” is the most common approach for assembling theranostic lipid nanoparticles, where the advantages of theranostics are achieved by combining multiple components that each possesses a specific singular function for therapeutic activity or imaging contrast. We will review lipoprotein nanoparticles and liposomes as representatives of the “all-in-one” approach. Complementary to the “all-in-one” approach is the emerging paradigm of the “one-for-all” approach where nanoparticle components are intrinsically multifunctional. We will discuss the “one-for-all” approach using porphysomes as a representative. We will further discuss how the concept of “one-for-all” might overcome the regulatory hurdles facing theranostic lipid nanomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baker M (2010) Whole-animal imaging: the whole picture. Nature 463(7283):977–980. doi:10.1038/463977a

    Article  CAS  PubMed  Google Scholar 

  2. Naumova AV, Modo M, Moore A, Murry CE, Frank JA (2014) Clinical imaging in regenerative medicine. Nat Biotechnol 32(8):804–818. doi:10.1038/nbt.2993

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Sakamoto JH, van de Ven AL, Godin B, Blanco E, Serda RE, Grattoni A, Ziemys A, Bouamrani A, Hu T, Ranganathan SI, De Rosa E, Martinez JO, Smid CA, Buchanan RM, Lee SY, Srinivasan S, Landry M, Meyn A, Tasciotti E, Liu X, Decuzzi P, Ferrari M (2010) Enabling individualized therapy through nanotechnology. Pharmacol Res Official J Ital Pharmacol Soc 62(2):57–89. doi:10.1016/j.phrs.2009.12.011

    Article  CAS  Google Scholar 

  4. Lammers T, Kiessling F, Hennink WE, Storm G (2010) Nanotheranostics and image-guided drug delivery: current concepts and future directions. Mol Pharm 7(6):1899–1912. doi:10.1021/mp100228v

    Article  CAS  PubMed  Google Scholar 

  5. Rizzo LY, Theek B, Storm G, Kiessling F, Lammers T (2013) Recent progress in nanomedicine: therapeutic, diagnostic and theranostic applications. Curr Opin Biotechnol 24(6):1159–1166. doi:10.1016/j.copbio.2013.02.020

    Article  CAS  PubMed  Google Scholar 

  6. Phillips WT, Bao A, Brenner AJ, Goins BA (2014) Image-guided interventional therapy for cancer with radiotherapeutic nanoparticles. Adv Drug Deliv Rev 76:39–59

    Google Scholar 

  7. Lovell JF, Liu TW, Chen J, Zheng G (2010) Activatable photosensitizers for imaging and therapy. Chem Rev 110(5):2839–2857. doi:10.1021/cr900236h

    Article  CAS  PubMed  Google Scholar 

  8. Lin Q, Chen J, Ng KK, Cao W, Zhang Z, Zheng G (2014) Imaging the cytosolic drug delivery mechanism of HDL-like nanoparticles. Pharm Res 31(6):1438–1449. doi:10.1007/s11095-013-1046-z

    Article  CAS  PubMed  Google Scholar 

  9. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46(12 Pt 1):6387–6392

    CAS  PubMed  Google Scholar 

  10. Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 41:189–207

    Article  CAS  PubMed  Google Scholar 

  11. Fang J, Nakamura H, Maeda H (2011) The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63(3):136–151. doi:10.1016/j.addr.2010.04.009

    Article  CAS  PubMed  Google Scholar 

  12. Gabizon AA (1995) Liposome circulation time and tumor targeting: implications for cancer chemotherapy. Adv Drug Deliv Rev 16(2–3):285–294

    Article  CAS  Google Scholar 

  13. Pegaz B, Debefve E, Ballini JP, Wagnieres G, Spaniol S, Albrecht V, Scheglmann DV, Nifantiev NE, van den Bergh H, Konan-Kouakou YN (2006) Photothrombic activity of m-THPC-loaded liposomal formulations: pre-clinical assessment on chick chorioallantoic membrane model. Eur J Pharm Sci Official J Eur Fed Pharm Sci 28(1–2):134–140. doi:10.1016/j.ejps.2006.01.008

    CAS  Google Scholar 

  14. Ernsting MJ, Murakami M, Roy A, Li SD (2013) Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. J Controlled Release Official J Controlled Release Soc 172(3):782–794. doi:10.1016/j.jconrel.2013.09.013

    Article  CAS  Google Scholar 

  15. Albanese A, Tang PS, Chan WC (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16. doi:10.1146/annurev-bioeng-071811-150124

    Article  CAS  PubMed  Google Scholar 

  16. Kaasgaard T, Andresen TL (2010) Liposomal cancer therapy: exploiting tumor characteristics. Expert Opin Drug Deliv 7(2):225–243. doi:10.1517/17425240903427940

    Article  CAS  PubMed  Google Scholar 

  17. Lammers T, Kiessling F, Hennink WE, Storm G (2012) Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J Controlled Release Official J Controlled Release Soc 161(2):175–187. doi:10.1016/j.jconrel.2011.09.063

    Article  CAS  Google Scholar 

  18. Ganta S, Devalapally H, Shahiwala A, Amiji M (2008) A review of stimuli-responsive nanocarriers for drug and gene delivery. J Controlled Release Official J Controlled Release Soc 126(3):187–204. doi:10.1016/j.jconrel.2007.12.017

    Article  CAS  Google Scholar 

  19. Gao W, Chan JM, Farokhzad OC (2010) pH-Responsive nanoparticles for drug delivery. Mol Pharm 7(6):1913–1920. doi:10.1021/mp100253e

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Rai P, Mallidi S, Zheng X, Rahmanzadeh R, Mir Y, Elrington S, Khurshid A, Hasan T (2010) Development and applications of photo-triggered theranostic agents. Adv Drug Deliv Rev 62(11):1094–1124. doi:10.1016/j.addr.2010.09.002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Huang Y, Jiang Y, Wang H, Wang J, Shin MC, Byun Y, He H, Liang Y, Yang VC (2013) Curb challenges of the “Trojan Horse” approach: smart strategies in achieving effective yet safe cell-penetrating peptide-based drug delivery. Adv Drug Deliv Rev 65(10):1299–1315. doi:10.1016/j.addr.2012.11.007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Mura S, Couvreur P (2012) Nanotheranostics for personalized medicine. Adv Drug Deliv Rev 64(13):1394–1416. doi:10.1016/j.addr.2012.06.006

    Article  CAS  PubMed  Google Scholar 

  23. Murakami M, Ernsting MJ, Li SD (2013) Theranostic nanoparticles for cancer imaging and therapy. In: Tiwari A, Tiwari A (eds) Nanomaterials in drug delivery, imaging, and tissue engineering. Wiley, New York, pp 363–383

    Google Scholar 

  24. Muthu MS, Leong DT, Mei L, Feng SS (2014) Nanotheranostics—application and further development of nanomedicine strategies for advanced theranostics. Theranostics 4(6):660–677. doi:10.7150/thno.8698

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Svenson S (2014) What nanomedicine in the clinic right now really forms nanoparticles? Wiley Interdisc Rev Nanomed Nanobiotechnol 6(2):125–135. doi:10.1002/wnan.1257

    Article  CAS  Google Scholar 

  26. Kraft JC, Freeling JP, Wang Z, Ho RJ (2014) Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. J Pharm Sci 103(1):29–52. doi:10.1002/jps.23773

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Yang F, Jin C, Jiang Y, Li J, Di Y, Ni Q, Fu D (2011) Liposome based delivery systems in pancreatic cancer treatment: from bench to bedside. Cancer Treat Rev 37(8):633–642. doi:10.1016/j.ctrv.2011.01.006

    Article  CAS  PubMed  Google Scholar 

  28. Paliwal SR, Paliwal R, Agrawal GP, Vyas SP (2011) Liposomal nanomedicine for breast cancer therapy. Nanomedicine (London, England) 6(6):1085–1100. doi:10.2217/nnm.11.72

  29. Zhao Y, Imura T, Leman LJ, Curtiss LK, Maryanoff BE, Ghadiri MR (2013) Mimicry of high-density lipoprotein: functional peptide-lipid nanoparticles based on multivalent peptide constructs. J Am Chem Soc 135(36):13414–13424. doi:10.1021/ja404714a

    Article  CAS  PubMed  Google Scholar 

  30. Li H, Marotta DE, Kim S, Busch TM, Wileyto EP, Zheng G (2005) High payload delivery of optical imaging and photodynamic therapy agents to tumors using phthalocyanine-reconstituted low-density lipoprotein nanoparticles. J Biomed Opt 10(4):41203. doi:10.1117/1.2011429

    Article  PubMed  CAS  Google Scholar 

  31. Zheng G, Chen J, Li H, Glickson JD (2005) Rerouting lipoprotein nanoparticles to selected alternate receptors for the targeted delivery of cancer diagnostic and therapeutic agents. Proc Natl Acad Sci USA 102(49):17757–17762. doi:10.1073/pnas.0508677102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. McMahon KM, Mutharasan RK, Tripathy S, Veliceasa D, Bobeica M, Shumaker DK, Luthi AJ, Helfand BT, Ardehali H, Mirkin CA, Volpert O, Thaxton CS (2011) Biomimetic high density lipoprotein nanoparticles for nucleic acid delivery. Nano Lett 11(3):1208–1214. doi:10.1021/nl1041947

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Damiano MG, Mutharasan RK, Tripathy S, McMahon KM, Thaxton CS (2013) Templated high density lipoprotein nanoparticles as potential therapies and for molecular delivery. Adv Drug Deliv Rev 65(5):649–662. doi:10.1016/j.addr.2012.07.013

    Article  CAS  PubMed  Google Scholar 

  34. Marotta DE, Cao W, Wileyto EP, Li H, Corbin I, Rickter E, Glickson JD, Chance B, Zheng G, Busch TM (2011) Evaluation of bacteriochlorophyll-reconstituted low-density lipoprotein nanoparticles for photodynamic therapy efficacy in vivo. Nanomedicine (London, England) 6(3):475–487. doi:10.2217/nnm.11.8

  35. Ng KK, Lovell JF, Zheng G (2011) Lipoprotein-inspired nanoparticles for cancer theranostics. Acc Chem Res 44(10):1105–1113. doi:10.1021/ar200017e

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Jin H, Chen J, Lovell JF, Zhang Z, Zheng G (2012) Synthesis and development of lipoprotein-based nanocarriers for light-activated theranostics. Isr J Chem 52(8–9):715–727

    Article  CAS  Google Scholar 

  37. Rensen PC, de Vrueh RL, Kuiper J, Bijsterbosch MK, Biessen EA, van Berkel TJ (2001) Recombinant lipoproteins: lipoprotein-like lipid particles for drug targeting. Adv Drug Deliv Rev 47(2–3):251–276

    Article  CAS  PubMed  Google Scholar 

  38. Lacko AG, Nair M, Prokai L, McConathy WJ (2007) Prospects and challenges of the development of lipoprotein-based formulations for anti-cancer drugs. Expert Opin Drug Deliv 4(6):665–675. doi:10.1517/17425247.4.6.665

    Article  CAS  PubMed  Google Scholar 

  39. Masquelier M, Vitols S, Peterson C (1986) Low-density lipoprotein as a carrier of antitumoral drugs: in vivo fate of drug-human low-density lipoprotein complexes in mice. Cancer Res 46(8):3842–3847

    CAS  PubMed  Google Scholar 

  40. Lundberg B (1987) Preparation of drug-low density lipoprotein complexes for delivery of antitumoral drugs via the low density lipoprotein pathway. Cancer Res 47(15):4105–4108

    CAS  PubMed  Google Scholar 

  41. McConathy WJ, Nair MP, Paranjape S, Mooberry L, Lacko AG (2008) Evaluation of synthetic/reconstituted high-density lipoproteins as delivery vehicles for paclitaxel. Anticancer Drugs 19(2):183–188. doi:10.1097/CAD.0b013e3282f1da86

    Article  CAS  PubMed  Google Scholar 

  42. Kader A, Pater A (2002) Loading anticancer drugs into HDL as well as LDL has little affect on properties of complexes and enhances cytotoxicity to human carcinoma cells. J Controlled Release Official J Controlled Release Soc 80(1–3):29–44

    Article  CAS  Google Scholar 

  43. Yang M, Chen J, Cao W, Ding L, Ng KK, Jin H, Zhang Z, Zheng G (2011) Attenuation of nontargeted cell-kill using a high-density lipoprotein-mimicking peptide–phospholipid nanoscaffold. Nanomedicine (London, England) 6(4):631–641. doi:10.2217/nnm.11.10

  44. Huntosova V, Buzova D, Petrovajova D, Kasak P, Nadova Z, Jancura D, Sureau F, Miskovsky P (2012) Development of a new LDL-based transport system for hydrophobic/amphiphilic drug delivery to cancer cells. Int J Pharm 436(1–2):463–471. doi:10.1016/j.ijpharm.2012.07.005

    Article  CAS  PubMed  Google Scholar 

  45. Zhang X, Chen B (2010) Recombinant high density lipoprotein reconstituted with apolipoprotein AI cysteine mutants as delivery vehicles for 10-hydroxycamptothecin. Cancer Lett 298(1):26–33. doi:10.1016/j.canlet.2010.05.023

    Article  CAS  PubMed  Google Scholar 

  46. Sabnis N, Nair M, Israel M, McConathy WJ, Lacko AG (2012) Enhanced solubility and functionality of valrubicin (AD-32) against cancer cells upon encapsulation into biocompatible nanoparticles. Int J Nanomed 7:975–983. doi:10.2147/ijn.s28029

    CAS  Google Scholar 

  47. Ghosh M, Ryan RO (2014) ApoE enhances nanodisk-mediated curcumin delivery to glioblastoma multiforme cells. Nanomedicine (London, England) 9(6):763–771. doi:10.2217/nnm.13.35

  48. Duivenvoorden R, Tang J, Cormode DP, Mieszawska AJ, Izquierdo-Garcia D, Ozcan C, Otten MJ, Zaidi N, Lobatto ME, van Rijs SM, Priem B, Kuan EL, Martel C, Hewing B, Sager H, Nahrendorf M, Randolph GJ, Stroes ES, Fuster V, Fisher EA, Fayad ZA, Mulder WJ (2014) A statin-loaded reconstituted high-density lipoprotein nanoparticle inhibits atherosclerotic plaque inflammation. Nature Commun 5:3065. doi:10.1038/ncomms4065

    Google Scholar 

  49. Bricarello DA, Smilowitz JT, Zivkovic AM, German JB, Parikh AN (2011) Reconstituted lipoprotein: a versatile class of biologically-inspired nanostructures. ACS Nano 5(1):42–57. doi:10.1021/nn103098m

    Article  CAS  PubMed  Google Scholar 

  50. Sabnis N, Lacko AG (2012) Drug delivery via lipoprotein-based carriers: answering the challenges in systemic therapeutics. Ther Deliv 3(5):599–608

    Article  CAS  PubMed  Google Scholar 

  51. Lin Q, Chen J, Zhang Z, Zheng G (2014) Lipid-based nanoparticles in the systemic delivery of siRNA. Nanomedicine (London, England) 9(1):105–120. doi:10.2217/nnm.13.192

  52. Lin Q, Jin CS, Huang H, Ding L, Zhang Z, Chen J, Zheng G (2014) Nanoparticle-enabled, image-guided treatment planning of target specific RNAi therapeutics in an orthotopic prostate cancer model. Small (Weinheim an der Bergstrasse, Germany) 10(15):3072–3082. doi:10.1002/smll.201303842

  53. Krieger M, Smith LC, Anderson RG, Goldstein JL, Kao YJ, Pownall HJ, Gotto AM Jr, Brown MS (1979) Reconstituted low density lipoprotein: a vehicle for the delivery of hydrophobic fluorescent probes to cells. J Supramol Struct 10(4):467–478. doi:10.1002/jss.400100409

    Article  CAS  PubMed  Google Scholar 

  54. Song L, Li H, Sunar U, Chen J, Corbin I, Yodh AG, Zheng G (2007) Naphthalocyanine-reconstituted LDL nanoparticles for in vivo cancer imaging and treatment. Int J Nanomed 2(4):767–774

    CAS  Google Scholar 

  55. Chen J, Corbin IR, Li H, Cao W, Glickson JD, Zheng G (2007) Ligand conjugated low-density lipoprotein nanoparticles for enhanced optical cancer imaging in vivo. J Am Chem Soc 129(18):5798–5799. doi:10.1021/ja069336k

    Article  CAS  PubMed  Google Scholar 

  56. Corbin IR, Chen J, Cao W, Li H, Lund-Katz S, Zheng G (2007) Enhanced cancer-targeted delivery using engineered high-density lipoprotein-based nanocarriers. J Biomed Nanotechnol 3(4):367–376

    Article  CAS  Google Scholar 

  57. Allijn IE, Leong W, Tang J, Gianella A, Mieszawska AJ, Fay F, Ma G, Russell S, Callo CB, Gordon RE, Korkmaz E, Post JA, Zhao Y, Gerritsen HC, Thran A, Proksa R, Daerr H, Storm G, Fuster V, Fisher EA, Fayad ZA, Mulder WJ, Cormode DP (2013) Gold nanocrystal labeling allows low-density lipoprotein imaging from the subcellular to macroscopic level. ACS Nano 7(11):9761–9770. doi:10.1021/nn403258w

    Article  CAS  PubMed  Google Scholar 

  58. Lee JY, Kim JH, Bae KH, Oh MH, Kim Y, Kim JS, Park TG, Park K, Lee JH, Nam YS (2014) Low-Density lipoprotein-mimicking nanoparticles for tumor-targeted theranostic applications. Small (Weinheim an der Bergstrasse, Germany). doi:10.1002/smll.201303277

  59. Corbin IR, Li H, Chen J, Lund-Katz S, Zhou R, Glickson JD, Zheng G (2006) Low-density lipoprotein nanoparticles as magnetic resonance imaging contrast agents. Neoplasia (NY) 8(6):488–498. doi:10.1593/neo.05835

  60. Frias JC, Williams KJ, Fisher EA, Fayad ZA (2004) Recombinant HDL-like nanoparticles: a specific contrast agent for MRI of atherosclerotic plaques. J Am Chem Soc 126(50):16316–16317. doi:10.1021/ja044911a

    Article  CAS  PubMed  Google Scholar 

  61. Cormode DP, Skajaa T, van Schooneveld MM, Koole R, Jarzyna P, Lobatto ME, Calcagno C, Barazza A, Gordon RE, Zanzonico P, Fisher EA, Fayad ZA, Mulder WJ (2008) Nanocrystal core high-density lipoproteins: a multimodality contrast agent platform. Nano Lett 8(11):3715–3723. doi:10.1021/nl801958b

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Bruns OT, Ittrich H, Peldschus K, Kaul MG, Tromsdorf UI, Lauterwasser J, Nikolic MS, Mollwitz B, Merkel M, Bigall NC, Sapra S, Reimer R, Hohenberg H, Weller H, Eychmuller A, Adam G, Beisiegel U, Heeren J (2009) Real-time magnetic resonance imaging and quantification of lipoprotein metabolism in vivo using nanocrystals. Nat Nanotechnol 4(3):193–201. doi:10.1038/nnano.2008.405

    Article  CAS  PubMed  Google Scholar 

  63. Hill ML, Corbin IR, Levitin RB, Cao W, Mainprize JG, Yaffe MJ, Zheng G (2010) In vitro assessment of poly-iodinated triglyceride reconstituted low-density lipoprotein: initial steps toward CT molecular imaging. Acad Radiol 17(11):1359–1365. doi:10.1016/j.acra.2010.06.006

    Article  PubMed  Google Scholar 

  64. Skajaa T, Cormode DP, Falk E, Mulder WJ, Fisher EA, Fayad ZA (2010) High-density lipoprotein-based contrast agents for multimodal imaging of atherosclerosis. Arterioscler Thromb Vasc Biol 30(2):169–176. doi:10.1161/atvbaha.108.179275

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Luthi AJ, Zhang H, Kim D, Giljohann DA, Mirkin CA, Thaxton CS (2012) Tailoring of biomimetic high-density lipoprotein nanostructures changes cholesterol binding and efflux. ACS Nano 6(1):276–285. doi:10.1021/nn2035457

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Ponty E, Favre G, Benaniba R, Boneu A, Lucot H, Carton M, Soula G (1993) Biodistribution study of 99mTc-labeled LDL in B16-melanoma-bearing mice. Visualization of a preferential uptake by the tumor. Int J Cancer J Int du Cancer 54(3):411–417

    Google Scholar 

  67. Moerlein SM, Daugherty A, Sobel BE, Welch MJ (1991) Metabolic imaging with gallium-68- and indium-111-labeled low-density lipoprotein. J Nucl Med: Official Publ, Soc Nucl Med 32(2):300–307

    CAS  Google Scholar 

  68. Bünau VG (1970) J. B. Birks: photophysics of aromatic molecules. Wiley-Interscience, London 1970 (704 Seiten. Preis: 210 s. Berichte der Bunsengesellschaft für physikalische Chemie 74(12):1294–1295. doi:10.1002/bbpc.19700741223)

  69. Jin H, Lovell JF, Chen J, Lin Q, Ding L, Ng KK, Pandey RK, Manoharan M, Zhang Z, Zheng G (2012) Mechanistic insights into LDL nanoparticle-mediated siRNA delivery. Bioconjug Chem 23(1):33–41. doi:10.1021/bc200233n

    Article  CAS  PubMed  Google Scholar 

  70. Zhang Z, Cao W, Jin H, Lovell JF, Yang M, Ding L, Chen J, Corbin I, Luo Q, Zheng G (2009) Biomimetic nanocarrier for direct cytosolic drug delivery. Angew Chem Int Ed Engl 48(48):9171–9175. doi:10.1002/anie.200903112

    Article  CAS  PubMed  Google Scholar 

  71. Zheng G, Li H, Zhang M, Lund-Katz S, Chance B, Glickson JD (2002) Low-density lipoprotein reconstituted by pyropheophorbide cholesteryl oleate as target-specific photosensitizer. Bioconjug Chem 13(3):392–396

    Article  CAS  PubMed  Google Scholar 

  72. Cao W, Ng KK, Corbin I, Zhang Z, Ding L, Chen J, Zheng G (2009) Synthesis and evaluation of a stable bacteriochlorophyll-analog and its incorporation into high-density lipoprotein nanoparticles for tumor imaging. Bioconjug Chem 20(11):2023–2031. doi:10.1021/bc900404y

    Article  CAS  PubMed  Google Scholar 

  73. Zhang Z, Chen J, Ding L, Jin H, Lovell JF, Corbin IR, Cao W, Lo PC, Yang M, Tsao MS, Luo Q, Zheng G (2010) HDL-mimicking peptide-lipid nanoparticles with improved tumor targeting. Small (Weinheim an der Bergstrasse, Germany) 6(3):430–437. doi:10.1002/smll.200901515

  74. Epand RM, Gawish A, Iqbal M, Gupta KB, Chen CH, Segrest JP, Anantharamaiah GM (1987) Studies of synthetic peptide analogs of the amphipathic helix. Effect of charge distribution, hydrophobicity, and secondary structure on lipid association and lecithin: cholesterol acyltransferase activation. J Biol Chem 262(19):9389–9396

    CAS  PubMed  Google Scholar 

  75. Ng KK, Lovell JF, Vedadi A, Hajian T, Zheng G (2013) Self-assembled porphyrin nanodiscs with structure-dependent activation for phototherapy and photodiagnostic applications. ACS Nano 7(4):3484–3490. doi:10.1021/nn400418y

    Article  CAS  PubMed  Google Scholar 

  76. Chen Y, Pullambhatla M, Banerjee SR, Byun Y, Stathis M, Rojas C, Slusher BS, Mease RC, Pomper MG (2012) Synthesis and biological evaluation of low molecular weight fluorescent imaging agents for the prostate-specific membrane antigen. Bioconjug Chem 23(12):2377–2385. doi:10.1021/bc3003919

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Yang M, Jin H, Chen J, Ding L, Ng KK, Lin Q, Lovell JF, Zhang Z, Zheng G (2011) Efficient cytosolic delivery of siRNA using HDL-mimicking nanoparticles. Small (Weinheim an der Bergstrasse, Germany) 7(5):568–573. doi:10.1002/smll.201001589

  78. Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4(2):145–160. doi:10.1038/nrd1632

    Article  CAS  PubMed  Google Scholar 

  79. Petros RA, DeSimone JM (2010) Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 9(8):615–627. doi:10.1038/nrd2591

    Article  CAS  PubMed  Google Scholar 

  80. Wang AZ, Langer R, Farokhzad OC (2012) Nanoparticle delivery of cancer drugs. Annu Rev Med 63:185–198. doi:10.1146/annurev-med-040210-162544

    Article  CAS  PubMed  Google Scholar 

  81. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8(1):102. doi:10.1186/1556-276x-8-102

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  82. Torchilin VP (2006) Multifunctional nanocarriers. Adv Drug Deliv Rev 58(14):1532–1555. doi:10.1016/j.addr.2006.09.009

    Article  CAS  PubMed  Google Scholar 

  83. Li S, Goins B, Zhang L, Bao A (2012) Novel multifunctional theranostic liposome drug delivery system: construction, characterization, and multimodality MR, near-infrared fluorescent, and nuclear imaging. Bioconjug Chem 23(6):1322–1332. doi:10.1021/bc300175d

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Al-Jamal WT, Kostarelos K (2011) Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Acc Chem Res 44(10):1094–1104. doi:10.1021/ar200105p

    Article  CAS  PubMed  Google Scholar 

  85. Grange C, Geninatti-Crich S, Esposito G, Alberti D, Tei L, Bussolati B, Aime S, Camussi G (2010) Combined delivery and magnetic resonance imaging of neural cell adhesion molecule-targeted doxorubicin-containing liposomes in experimentally induced Kaposi’s sarcoma. Cancer Res 70(6):2180–2190. doi:10.1158/0008-5472.can-09-2821

    Article  CAS  PubMed  Google Scholar 

  86. Karathanasis E, Chan L, Balusu SR, D’Orsi CJ, Annapragada AV, Sechopoulos I, Bellamkonda RV (2008) Multifunctional nanocarriers for mammographic quantification of tumor dosing and prognosis of breast cancer therapy. Biomaterials 29(36):4815–4822. doi:10.1016/j.biomaterials.2008.08.036

    Article  CAS  PubMed  Google Scholar 

  87. Viglianti BL, Ponce AM, Michelich CR, Yu D, Abraham SA, Sanders L, Yarmolenko PS, Schroeder T, MacFall JR, Barboriak DP, Colvin OM, Bally MB, Dewhirst MW (2006) Chemodosimetry of in vivo tumor liposomal drug concentration using MRI. Magn Reson Med Official J Soc Magn Reson Med Soc Magn Reson Med 56(5):1011–1018. doi:10.1002/mrm.21032

    Article  CAS  Google Scholar 

  88. Tagami T, Foltz WD, Ernsting MJ, Lee CM, Tannock IF, May JP, Li SD (2011) MRI monitoring of intratumoral drug delivery and prediction of the therapeutic effect with a multifunctional thermosensitive liposome. Biomaterials 32(27):6570–6578. doi:10.1016/j.biomaterials.2011.05.029

    Article  CAS  PubMed  Google Scholar 

  89. Li L, ten Hagen TL, Bolkestein M, Gasselhuber A, Yatvin J, van Rhoon GC, Eggermont AM, Haemmerich D, Koning GA (2013) Improved intratumoral nanoparticle extravasation and penetration by mild hyperthermia. J Controlled Release Official J Controlled Release Soc 167(2):130–137. doi:10.1016/j.jconrel.2013.01.026

    Article  CAS  Google Scholar 

  90. Li L, ten Hagen TL, Haeri A, Soullie T, Scholten C, Seynhaeve AL, Eggermont AM, Koning GA (2014) A novel two-step mild hyperthermia for advanced liposomal chemotherapy. J Controlled Release: Official J Controlled Release Soc 174:202–208. doi:10.1016/j.jconrel.2013.11.012

    Article  CAS  Google Scholar 

  91. Landon CD, Park JY, Needham D, Dewhirst MW (2011) Nanoscale drug delivery and hyperthermia: the materials design and preclinical and clinical testing of low temperature-sensitive liposomes used in combination with mild hyperthermia in the treatment of local cancer. Open Nanomed J 3:38–64. doi:10.2174/1875933501103010038

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  92. Lee DE, Koo H, Sun IC, Ryu JH, Kim K, Kwon IC (2012) Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem Soc Rev 41(7):2656–2672. doi:10.1039/c2cs15261d

    Article  CAS  PubMed  Google Scholar 

  93. Puri A, Loomis K, Smith B, Lee JH, Yavlovich A, Heldman E, Blumenthal R (2009) Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit Rev Ther Drug Carrier Syst 26(6):523–580

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Elbayoumi TA, Torchilin VP (2010) Current trends in liposome research. Meth Mol Biol (Clifton, NJ) 605:1–27. doi:10.1007/978-1-60327-360-2_1

  95. Cheng Z, Al Zaki A, Hui JZ, Muzykantov VR, Tsourkas A (2012) Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science (NY) 338(6109):903–910. doi:10.1126/science.1226338

  96. Etheridge ML, Campbell SA, Erdman AG, Haynes CL, Wolf SM, McCullough J (2013) The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomed Nanotechnol Biol Med 9(1):1–14. doi:10.1016/j.nano.2012.05.013

    Article  CAS  Google Scholar 

  97. Bealle G, Di Corato R, Kolosnjaj-Tabi J, Dupuis V, Clement O, Gazeau F, Wilhelm C, Menager C (2012) Ultra magnetic liposomes for MR imaging, targeting, and hyperthermia. Langmuir: ACS J Surf Colloids 28(32):11834–11842. doi:10.1021/la3024716

    Article  CAS  Google Scholar 

  98. Huynh E, Zheng G (2013) Engineering multifunctional nanoparticles: all-in-one versus one-for-all. Wiley Interdisc Rev Nanomed Nanobiotechnol 5(3):250–265. doi:10.1002/wnan.1217

    Article  CAS  Google Scholar 

  99. Wei A, Mehtala JG, Patri AK (2012) Challenges and opportunities in the advancement of nanomedicines. J Controlled Release Official J Controlled Release Soc 164(2):236–246. doi:10.1016/j.jconrel.2012.10.007

    Article  CAS  Google Scholar 

  100. Svenson S (2013) Theranostics: are we there yet? Mol Pharm 10(3):848–856. doi:10.1021/mp300644n

    Article  CAS  PubMed  Google Scholar 

  101. Petersen AL, Hansen AE, Gabizon A, Andresen TL (2012) Liposome imaging agents in personalized medicine. Adv Drug Deliv Rev 64(13):1417–1435. doi:10.1016/j.addr.2012.09.003

    Article  CAS  PubMed  Google Scholar 

  102. Kaibara A, Matsumara G (2012) Handbook of porphyrins: Chemistry, properties, and applications. Handbook of Porphyrins: Chemistry, Properties and Applications

    Google Scholar 

  103. Carter KA, Shao S, Hoopes MI, Luo D, Ahsan B, Grigoryants VM, Song W, Huang H, Zhang G, Pandey RK, Geng J, Pfeifer BA, Scholes CP, Ortega J, Karttunen M, Lovell JF (2014) Porphyrin-phospholipid liposomes permeabilized by near-infrared light. Nat Commun 5:3546. doi:10.1038/ncomms4546

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  104. Zhang Y, Lovell JF (2012) Porphyrins as theranostic agents from prehistoric to modern times. Theranostics 2(9):905–915. doi:10.7150/thno.4908

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Josefsen LB, Boyle RW (2012) Unique diagnostic and therapeutic roles of porphyrins and phthalocyanines in photodynamic therapy, imaging and theranostics. Theranostics 2(9):916–966. doi:10.7150/thno.4571

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Glidden MD, Celli JP, Massodi I, Rizvi I, Pogue BW, Hasan T (2012) Image-Based quantification of benzoporphyrin derivative uptake, localization, and photobleaching in 3D tumor models, for optimization of PDT parameters. Theranostics 2(9):827–839. doi:10.7150/thno.4334

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Ng KK, Shakiba M, Huynh E, Weersink RA, Roxin A, Wilson BC, Zheng G (2014) Stimuli-responsive photoacoustic nanoswitch for in vivo sensing applications. ACS Nano. doi:10.1021/nn502858b

  108. Ali H, van Lier JE (1999) Metal complexes as photo- and radiosensitizers. Chem Rev 99(9):2379–2450

    Article  CAS  PubMed  Google Scholar 

  109. Lovell JF, Jin CS, Huynh E, Jin H, Kim C, Rubinstein JL, Chan WC, Cao W, Wang LV, Zheng G (2011) Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat Mater 10(4):324–332. doi:10.1038/nmat2986

    Article  CAS  PubMed  Google Scholar 

  110. Liu TW, Macdonald TD, Jin CS, Gold JM, Bristow RG, Wilson BC, Zheng G (2013) Inherently multimodal nanoparticle-driven tracking and real-time delineation of orthotopic prostate tumors and micrometastases. ACS Nano 7(5):4221–4232. doi:10.1021/nn400669r

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. de Souza N (2011) One particle to rule them all? Nat Meth 8(5):370–371

    Article  CAS  Google Scholar 

  112. Liu TW, MacDonald TD, Shi J, Wilson BC, Zheng G (2012) Intrinsically copper-64-labeled organic nanoparticles as radiotracers. Angew Chem Int Ed Engl 51(52):13128–13131. doi:10.1002/anie.201206939

    Article  CAS  PubMed  Google Scholar 

  113. MacDonald TD, Liu TW, Zheng G (2014) An MRI-sensitive, non-photobleachable porphysome photothermal agent. Angew Chem Int Ed Engl 53(27):6956–6959. doi:10.1002/anie.201400133

    Article  CAS  PubMed  Google Scholar 

  114. Jin CS, Lovell JF, Chen J, Zheng G (2013) Ablation of hypoxic tumors with dose-equivalent photothermal, but not photodynamic, therapy using a nanostructured porphyrin assembly. ACS Nano 7(3):2541–2550. doi:10.1021/nn3058642

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  115. Jin CS, Cui L, Wang F, Chen J, Zheng G (2014) Targeting-triggered porphysome nanostructure disruption for activatable photodynamic therapy. Adv Healthc Mater 3(8):1240–1249. doi:10.1002/adhm.201300651

    Article  CAS  PubMed  Google Scholar 

  116. Pluen A, Boucher Y, Ramanujan S, McKee TD, Gohongi T, di Tomaso E, Brown EB, Izumi Y, Campbell RB, Berk DA, Jain RK (2001) Role of tumor-host interactions in interstitial diffusion of macromolecules: cranial versus subcutaneous tumors. Proc Natl Acad Sci USA 98(8):4628–4633. doi:10.1073/pnas.081626898

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  117. Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, Terada Y, Kano MR, Miyazono K, Uesaka M, Nishiyama N, Kataoka K (2011) Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol 6(12):815–823. doi:10.1038/nnano.2011.166

    Article  CAS  PubMed  Google Scholar 

  118. Sykes EA, Chen J, Zheng G, Chan WC (2014) Investigating the impact of nanoparticle size on active and passive tumor targeting efficiency. ACS Nano 8(6):5696–5706. doi:10.1021/nn500299p

    Article  CAS  PubMed  Google Scholar 

  119. Hsu CY, Nieh MP, Lai PS (2012) Facile self-assembly of porphyrin-embedded polymeric vesicles for theranostic applications. Chem Commun (Camb) 48(75):9343–9345. doi:10.1039/c2cc33851c

  120. Zhang Y, Jeon M, Rich LJ, Hong H, Geng J, Zhang Y, Shi S, Barnhart TE, Alexandridis P, Huizinga JD, Seshadri M, Cai W, Kim C, Lovell JF (2014) Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines. Nat Nanotechnol 9(8):631–638. doi:10.1038/nnano.2014.130

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Charron, D.M., Chen, J., Zheng, G. (2015). Theranostic Lipid Nanoparticles for Cancer Medicine. In: Mirkin, C., Meade, T., Petrosko, S., Stegh, A. (eds) Nanotechnology-Based Precision Tools for the Detection and Treatment of Cancer. Cancer Treatment and Research, vol 166. Springer, Cham. https://doi.org/10.1007/978-3-319-16555-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16555-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16554-7

  • Online ISBN: 978-3-319-16555-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics