Skip to main content

Part of the book series: Cancer Treatment and Research ((CTAR,volume 166))

Abstract

To be legally sold in the United States, all drugs must go through the FDA approval process. This chapter introduces the FDA approval process and describes the clinical trials required for a drug to gain approval. We then look at the different cancer nanotherapeutics and in vivo diagnostics that are currently in clinical trials or have already received approval. These nanotechnologies are catagorized and described based on the delivery vehicle: liposomes, polymer micelles, albumin-bound chemotherapeutics, polymer-bound chemotherapeutics, and inorganic particles.

Dr. Abigail K.R. Lytton-Jean, Kevin J Kauffman and James C. Kaczmarek contributed equally to this work

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fang J, Nakamura H, Maeda H (2011) The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63(3):136–151

    Article  CAS  PubMed  Google Scholar 

  2. Scott AM, Wolchok JD, Old LJ (2012) Antibody therapy of cancer. Nat Rev Cancer 12(4):278–287

    Article  CAS  PubMed  Google Scholar 

  3. Vanneman M, Dranoff G (2012) Combining immunotherapy and targeted therapies in cancer treatment. Nat Rev Cancer 12(4):237–251

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Lipsky MS, Sharp LK (2001) From idea to market: the drug approval process. J Am Board Fam Med 14(5):362–367

    CAS  Google Scholar 

  5. Eifler AC, Thaxton CS (2011) Nanoparticle therapeutics: FDA approval, clinical trials, regulatory pathways, and case study. In: Hurst SJ (ed) Methods in molecular biology (Clifton NJ), vol 726. pp 325–38

    Google Scholar 

  6. NCI (2014) Nanotechnology characterization laboratory. http://ncl.cancer.gov

  7. Kinders R et al (2007) Phase 0 clinical trials in cancer drug development: from FDA guidance to clinical practice. Mol Interv 7(6):325–334

    Article  CAS  PubMed  Google Scholar 

  8. Hay M et al (2014) Clinical development success rates for investigational drugs. Nat Biotechnol 32(1):40–51

    Article  CAS  PubMed  Google Scholar 

  9. DiMasi J (2001) Risks in new drug development: approval success rates for investigational drugs. Clin Pharmacol Ther 69(5):297–307

    Article  CAS  PubMed  Google Scholar 

  10. Glasser SP, Salas M, Delzell E (2007) Importance and challenges of studying marketed drugs: what is a phase IV study? Common clinical research designs, registries, and self-reporting systems. J Clin Pharmacol 47(9):1074–1086

    Article  PubMed  Google Scholar 

  11. DiMasi JA, Hansen RW, Grabowski HG (2003) The price of innovation: new estimates of drug development costs. J Health Econ 22(2):151–185

    Article  PubMed  Google Scholar 

  12. Lundqvist EÅ (2012) Principles of chemotherapy. Int J Gynecol Obstet 119 (Suppl(M)):S151–S154

    Google Scholar 

  13. Siddik ZH (2002) Mechanisms of action of cancer chemotherapeutic agents : DNA-interactive alkylating agents and antitumour platinum-based drugs

    Google Scholar 

  14. Rowinsky EK, Donehower RC (1995) Paclitaxel (taxol). New Engl J Med 332:1004–1014

    Google Scholar 

  15. Rowinsky EK, Donehower RC (1991) The clinical pharmacology and use of antimicrotubule agents in cancer chemotherapeutics. Pharmacol Ther 52(1):35–84

    Article  CAS  PubMed  Google Scholar 

  16. Tacar O, Sriamornsak P, Dass CR (2013) Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol 65(2):157–170

    Article  CAS  PubMed  Google Scholar 

  17. Fire A et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  18. Zamore PD et al (2000) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21–23 nucleotide intervals. Cell 101(1):25–33

    Article  CAS  PubMed  Google Scholar 

  19. McManus MT, Sharp PA (2002) Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 3(10):737–747

    Article  CAS  PubMed  Google Scholar 

  20. Gottesman M (2002) Mechanisms of cancer drug resistance. Annu Rev Med 53:615–627

    Article  CAS  PubMed  Google Scholar 

  21. Whitehead KA, Langer R, Anderson DG (2009) Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 8(2):129–138

    Article  CAS  PubMed  Google Scholar 

  22. Kanasty R et al (2013) Delivery materials for siRNA therapeutics. Nat Mater 12(11):967–977

    Article  CAS  PubMed  Google Scholar 

  23. Shen H, Sun T, Ferrari M (2012) Nanovector delivery of siRNA for cancer therapy. Cancer Gene Ther 19(6):367–373

    Article  CAS  PubMed  Google Scholar 

  24. Frey N et al (2009) Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem Soc Rev 38(9):2532–2542

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Rosen JE et al (2012) Iron oxide nanoparticles for targeted cancer imaging and diagnostics. Nanomed Nanotechnol Biol Med 8(3):275–290

    Article  CAS  Google Scholar 

  26. Josephson L et al (2002) Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes. Bioconjug Chem 13(3):554–560

    Article  CAS  PubMed  Google Scholar 

  27. Kobayashi T et al (1977) Enhancement of anti-tumor activity of 1-B-D-Arabinofuranosylcytosine by encapsulation in liposomes. Int J Cancer 20:581–587

    Article  CAS  PubMed  Google Scholar 

  28. Allen TM, Cullis PR (2013) Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 65(1):36–48

    Article  CAS  PubMed  Google Scholar 

  29. Barenholz Y (2012) Doxil®–the first FDA-approved nano-drug: lessons learned. J Controlled Release 160(2):117–134

    Article  CAS  Google Scholar 

  30. Allen TM, Chonn A (1987) Large unilamellar liposomes with low uptake into the reticuloendothelial system. FEBS Lett 223(1):42–46

    Article  CAS  PubMed  Google Scholar 

  31. Haran G et al (1993) Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases. Biochim Biophys Acta 1151(2):201–215

    Article  CAS  PubMed  Google Scholar 

  32. Gabizon AA, Barenholz Y, Bialer M (1993) Prolongation of the circulation time of doxorubicin encapsulated in liposomes containing polyethylene glycol-derivatized phospholipid: pharmacokinetic studies in rodents and dogs. Pharm Res 5:703–708

    Article  Google Scholar 

  33. Gabizon A et al (1994) Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyet. Cancer Res 54:987–992

    CAS  PubMed  Google Scholar 

  34. ClinicalTrials.gov (2008) NCT00606515: Pharmacokinetics study of liposomal paclitaxel in humans (LPS-PK-H). http://www.clinicaltrials.gov/show/NCT00606515

  35. ClinicalTrials.gov (1999) NCT00004083: liposomal cisplatin in treating patients with recurrent ovarian cancer. http://www.clinicaltrials.gov/show/NCT00004083

  36. Lorusso D et al (2007) Pegylated liposomal doxorubicin-related palmar-plantar erythrodysesthesia (‘hand-foot’ syndrome). Ann Oncol: Off J Eur Soc Med Oncol/ESMO 18(7):1159–1164

    Article  CAS  Google Scholar 

  37. Arteaga CL et al (2012) Treatment of HER2-positive breast cancer: current status and future perspectives. Nat Rev Clin Oncol 9(1):16–32

    Article  CAS  Google Scholar 

  38. Baselga J et al (2014) Phase III trial of nonpegylated liposomal doxorubicin in combination with trastuzumab and paclitaxel in HER2-positive metastatic breast cancer. Ann Oncol: Off J Eur Soc Med Oncol/ESMO 25(3):592–598

    Article  CAS  Google Scholar 

  39. Nicholson R, Gee J, Harper M (2001) EGFR and cancer prognosis. Eur J Cancer 37:9–15

    Article  Google Scholar 

  40. Mamot C et al (2003) Epidermal growth factor receptor (EGFR)—targeted immunoliposomes mediate specific and efficient drug delivery to EGFR- and EGFRvIII-overexpressing tumor cells. Cancer Res 63:3154–3161

    CAS  PubMed  Google Scholar 

  41. Mamot C et al (2005) Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo. Cancer Res 65(24):11631–11638

    Article  CAS  PubMed  Google Scholar 

  42. ClinicalTrials.gov (2012) NCT01702129: anti-EGFR immunoliposomes in solid tumors. http://www.clinicaltrials.gov/show/NCT01702129

  43. Mamot C et al (2012) Tolerability, safety, pharmacokinetics, and efficacy of doxorubicin-loaded anti-EGFR immunoliposomes in advanced solid tumours: a phase 1 dose-escalation study. Lancet Oncol 13(12):1234–1241

    Article  CAS  PubMed  Google Scholar 

  44. ClinicalTrials.gov (2013) NCT01960348: the study of an investigational drug, ALN-TTR02, for the treatment of transthyretin (TTR)-mediated amyloidosis. http://www.clinicaltrials.gov/show/NCT01960348

  45. Thaker PH et al (2004) EphA2 expression is associated with aggressive features in ovarian carcinoma. Clin Cancer Res 10:5145–5150

    Article  CAS  PubMed  Google Scholar 

  46. Aleku M et al (2008) Atu027, a liposomal small interfering RNA formulation targeting protein kinase N3, inhibits cancer progression. Cancer Res 68(23):9788–9798

    Article  CAS  PubMed  Google Scholar 

  47. Heyes J et al (2005) Cationic lipid saturation influences intracellular delivery of encapsulated nucleic acids. J Controlled Release 107(2):276–287

    Article  CAS  Google Scholar 

  48. Jayaraman M et al (2012) Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew Chem Int Ed Engl 51(34):8529–8533

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Semple SC et al (2010) Rational design of cationic lipids for siRNA delivery. Nat Biotechnol 28(2):172–176

    Article  CAS  PubMed  Google Scholar 

  50. Akinc A et al (2008) A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat Biotechnol 26(5):561–569

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Dong Y et al (2014) Lipopeptide nanoparticles for potent and selective siRNA delivery in rodents and nonhuman primates. Proc Natl Acad Sci 111(11):3955–3960

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Love KT et al (2010) Lipid-like materials for low-dose, in vivo gene silencing. In: Proceedings of the national academy of sciences of the united states of America, vol 107, issue no 5, pp 1864–1869

    Google Scholar 

  53. Whitehead KA et al (2012) In vitro-In vivo translation of lipid nanoparticles for hepatocellular siRNA delivery. ACS Nano 6:6922–6929

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Zimmermann TS et al (2006) RNAi-mediated gene silencing in non-human primates. Nature 441(7089):111–114

    Article  CAS  PubMed  Google Scholar 

  55. ClinicalTrials.gov (2009) NCT00882180: dose escalation trial to evaluate the safety, tolerability, pharmacokinetics and pharmacodynamics of intravenous ALN-VSP02 in patients with advanced solid tumors with liver involvement. http://www.clinicaltrials.gov/show/NCT00882180

  56. Tabernero J et al (2013) First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement. Cancer Discov 3(4):406–417

    Article  CAS  PubMed  Google Scholar 

  57. ClinicalTrials.gov (2011) NCT01437007: TKM 080301 for primary or secondary liver cancer. http://www.clinicaltrials.gov/show/NCT01437007

  58. Strebhardt K, Ullrich A (2006) Targeting polo-like kinase 1 for cancer therapy. Nat Rev Cancer 6:321–330

    Article  CAS  PubMed  Google Scholar 

  59. Santel A et al (2006) A novel siRNA-lipoplex technology for RNA interference in the mouse vascular endothelium. Gene Ther 13(16):1222–1234

    Article  CAS  PubMed  Google Scholar 

  60. ClinicalTrials.gov (2009) NCT00938574: study with Atu027 in patients with advanced solid cancer. http://clinicaltrials.gov/show/NCT00938574

  61. Strumberg D et al (2012) Antimetastatic activity of Atu027, a liposomal small interfering RNA formulation, targeting protein kinase N3 (PKN3): final results of a phase I study in patients with advanced solid tumors. J Clin Oncol (Meeting Abstracts) 30:e13597

    Google Scholar 

  62. ClinicalTrials.gov (2013) NCT01808638: Atu027 plus gemcitabine in advanced or metastatic pancreatic cancer (Atu027-I-02). http://www.clinicaltrials.gov/show/NCT01808638

  63. ClinicalTrials.gov (2012) NCT01591356: EphA2 gene targeting using neutral liposomal small interfering RNA delivery. http://www.clinicaltrials.gov/show/NCT01591356

  64. ClinicalTrials.gov (2014) NCT02110563: phase I, multicenter, dose escalation study of DCR-MYC in patients with solid tumors, multiple myeloma, or lymphoma. http://www.clinicaltrials.gov/show/NCT02110563

  65. Kim D-H et al (2005) Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat Biotechnol 23(2):222–226

    Article  CAS  PubMed  Google Scholar 

  66. Dudek H et al (2014) Knockdown of β-catenin with dicer-substrate siRNAs reduces liver tumor burden in vivo. Mol Ther 22(1):92–101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Wong DH et al (2012) MYC dicer substrate siRNA formulated in EnCore lipid nanoparticle reduces tumor burden in the Hep3B orthotopic hepatocellular carcinoma model. In: International liver cancer association annual conference

    Google Scholar 

  68. Davis ME (2009) Design and development of IT-101, a cyclodextrin-containing polymer conjugate of camptothecin. Adv Drug Deliv Rev 61(13):1189–1192

    Article  CAS  PubMed  Google Scholar 

  69. Kim SC et al (2001) In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy. J Controlled Release 72(1–3):191–202

    Article  CAS  Google Scholar 

  70. ClinicalTrials.gov (2011) NCT01426126: Study of genexol-PM in patients with advanced urothelial cancer previously treated with gemcitabine and platinum. http://www.clinicaltrials.gov/show/NCT01426126

  71. ClinicalTrials.gov (2014) NCT02064829: bioequivalence study of IG-001 versus abraxane in metastatic or locally recurrent breast cancer. http://www.clinicaltrials.gov/show/NCT02064829

  72. Sorrento (2014) Sorrento announces first patient dosed in registration trial to evaluate bioequivalence between cynviloq and abraxane. http://www.sorrentotherapeutics.com/sorrento-announces-first-patient-dosed-in-registration-trial-to-evaluate-bioequivalence-between-cynviloq-and-abraxane/

  73. Hamaguchi T et al (2005) NK105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel. Br J Cancer 92(7):1240–1246

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. ClinicalTrials.gov (2012) NCT01644890: a phase III study of NK105 in patients with breast cancer. http://www.clinicaltrials.gov/show/NCT01644890

  75. Kato K et al (2012) Phase II study of NK105, a paclitaxel-incorporating micellar nanoparticle, for previously treated advanced or recurrent gastric cancer. Invest New Drugs 30(4):1621–1627

    Article  CAS  PubMed  Google Scholar 

  76. Ghosh A, Heston WDW (2004) Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer. J Cell Biochem 91(3):528–539

    Article  CAS  PubMed  Google Scholar 

  77. Hrkach J et al (2012) Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci Transl Med 4(128):1–11

    Google Scholar 

  78. ClinicalTrials.gov (2011) NCT01300533: a study of BIND-014 given to patients with advanced or metastatic cancer. http://www.clinicaltrials.gov/show/NCT01300533

  79. ClinicalTrials.gov (2013) NCT01812746: a phase 2 study to determine the safety and efficacy of BIND-014 (Docetaxel nanoparticles for injectable suspension), administered to patients with metastatic castration-resistant prostate cancer. http://www.clinicaltrials.gov/show/NCT01812746

  80. ClinicalTrials.gov (2013) NCT01792479: a phase 2 study to determine the safety and efficacy of BIND-014 (Docetaxel nanoparticles for injectable suspension) as second-line therapy to patients with non-small cell lung cancer. http://www.clinicaltrials.gov/show/NCT01792479

  81. Gonzalez H, Hwang SJ, Davis ME (1999) New class of polymers for the delivery of macromolecular therapeutics. Bioconjugate Chem 10(6):1068–1074

    Article  CAS  Google Scholar 

  82. Bartlett DW, Davis ME (2008) Impact of tumor-specific targeting and dosing schedule on tumor growth inhibition after intravenous administration of siRNA-containing nanoparticles. Biotechnol Bioeng 99(4):975–985

    Article  CAS  PubMed  Google Scholar 

  83. ClinicalTrials.gov (2008) NCT00689065: safety study of CALAA-01 to treat solid tumor cancers. http://www.clinicaltrials.gov/show/NCT00689065

  84. Davis ME et al (2010) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464(7291):1067–1070

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Hawkins MJ, Soon-Shiong P, Desai N (2008) Protein nanoparticles as drug carriers in clinical medicine. Adv Drug Deliv Rev 60(8):876–885

    Article  CAS  PubMed  Google Scholar 

  86. Ibrahim NK et al (2002) Phase I and pharmacokinetic study of ABI-007, a of paclitaxel phase I and pharmacokinetic study of ABI-007, a cremophor-free, protein-stabilized, nanoparticle formulation of paclitaxel. Clin Cancer Res 8:1038–1044

    CAS  PubMed  Google Scholar 

  87. Desai N (2008) Nab technology: a drug delivery platform utilising endothelial gp60 receptor-based transport and tumor derived SPARC for targeting. Drug Deliv Rep, Winter 200:37–41

    Google Scholar 

  88. Gelderblom H et al (2001) Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer 37(13):1590–1598

    Article  CAS  PubMed  Google Scholar 

  89. Desai NP et al (2000) Protein-based nanoparticles for drug delivery of paclitaxel. In: Transactions of the sixth world biomaterials congress, Kamuela, Hawaii, USA: society for biomaterials, USA, p 199

    Google Scholar 

  90. Gradishar WJ et al (2005) Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J Clin Oncol 23(31):7794–7803

    Article  CAS  PubMed  Google Scholar 

  91. NCI (2013) FDA approval for paclitaxel albumin-stablized nanoparticle formulation. http://www.cancer.gov/cancertopics/druginfo/fda-nanoparticle-paclitaxel

  92. ClinicalTrials.gov (2008) NCT00736619: weekly nanoparticle albumin-bound paclitaxel (Abraxane) + weekly cetuximab + radiation therapy (IMRT intensity-modulated radiation therapy) in patients with stage III-IVB head and neck squamous cell carcinoma (HNSCC). http://www.clinicaltrials.gov/show/NCT00736619

  93. Fury MG et al (2014) Phase I study of weekly nab-paclitaxel + weekly cetuximab + intensity-modulated radiation therapy (IMRT) in patients with stage III-IVB head and neck squamous cell carcinoma (HNSCC). Ann Oncol: Off J Eur Soc Med Oncol/ESMO 25(3):689–694

    Article  CAS  Google Scholar 

  94. ClinicalTrials.gov (2004) NCT00093145: Study of albumin-bound paclitaxel (Abraxane) in combination with carboplatin and herceptin in patients with advanced breast cancer. http://www.clinicaltrials.gov/show/NCT00093145

  95. Conlin AK et al (2010) Phase II trial of weekly nanoparticle albumin-bound paclitaxel with carboplatin and trastuzumab as first-line therapy for women with HER2-overexpressing metastatic breast cancer. Clin Breast Cancer 10(4):281–287

    Article  CAS  PubMed  Google Scholar 

  96. ClinicalTrials.gov (2008) NCT00785291: paclitaxel, paclitaxel albumin-stabilized nanoparticle formulation, or Ixabepilone with or without Bevacizumab in treating patients with stage IIIC or stage IV breast cancer. http://www.clinicaltrials.gov/show/NCT00785291

  97. Hidalgo M, Rowinsky EK (2000) The rapamycin-sensitive signal transduction pathway as a target for cancer therapy. Oncogene 19(56):6680–6686

    Article  CAS  PubMed  Google Scholar 

  98. Desai N, D’Cruz O, Trieu V (2010) Combination regimens of nab-rapamycin (ABI-009) effective against MDA-MB-231 breast-tumor xenografts. Cancer Res 69(24 Supplement):6106

    Google Scholar 

  99. ClinicalTrials.gov (2013) NCT02009332: phase 1/2 study of ABI-009 in nonmuscle invasive bladder cancer. http://www.clinicaltrials.gov/show/NCT02009332

  100. Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6(9):688–701

    Article  CAS  PubMed  Google Scholar 

  101. Kopecek J, Kopecková P (2010) HPMA copolymers: origins, early developments, present, and future. Adv Drug Deliv Rev 62(2):122–149

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Vasey PA et al (1999) Phase I clinical and pharmacokinetic study of PK1 [N—(2-Hydroxypropyl) methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents—drug-polymer conjugates. Clin Cancer Res 5:83–94

    CAS  PubMed  Google Scholar 

  103. Duncan R, Vicent MJ (2010) Do HPMA copolymer conjugates have a future as clinically useful nanomedicines? A critical overview of current status and future opportunities. Adv Drug Deliv Rev 62(2):272–282

    Article  CAS  PubMed  Google Scholar 

  104. Singer JW et al (2003) Poly-(L)-Glutamic Acid-Paclitaxel (CT-2103) [XYTOTX], a bioregradable polyermic drug conjugate. In: Polymer drugs in the clinical stage. pp 81–99

    Google Scholar 

  105. O’Brien MER et al (2008) Randomized phase III trial comparing single-agent gemcitabine or vinorelbine for the treatment of PS 2 patients with chemotherapy-naive advanced non-small cell lung cancer. J Thorac Oncol 3(7):728–734

    Article  PubMed  Google Scholar 

  106. ClinicalTrials.gov (2007) NCT00576225: CT-2103/carboplatin versus paclitaxel/carboplatin for NSCLC in women with estradiol >25 pg/mL. http://www.clinicaltrials.gov/show/NCT00576225

  107. ClinicalTrials.gov (2007) NCT00459810: paclitaxel poliglumex and estradiol in treating patients with stage IV prostate cancer. http://www.clinicaltrials.gov/show/NCT00459810

  108. ClinicalTrials.gov (2001) NCT00017017: CT-2103 in treating patients with recurrent ovarian epithelial or fallopian tube cancer or primary peritoneal cancer. http://www.clinicaltrials.gov/show/NCT00017017

  109. ClinicalTrials.gov (2011) NCT01402063: PPX and concurrent radiation for newly diagnosed glioblastoma without MGMT methylation

    Google Scholar 

  110. Yurkovetskiy AV et al (2004) Synthesis of a macromolecular camptothecin conjugate with dual phase drug release. Mol Pharm 1(5):375–382

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Walsh MD et al (2012) Pharmacokinetics and antitumor efficacy of XMT-1001, a novel, polymeric topoisomerase I inhibitor, in mice bearing HT-29 human colon carcinoma xenografts. Clin Cancer Res 18(9):2591–2602

    Article  CAS  PubMed  Google Scholar 

  112. ClinicalTrials.gov (2007) NCT00455052: a study of intravenous XMT-1001 in patients with advanced solid tumors. http://www.clinicaltrials.gov/show/NCT00455052

  113. Sausville EA et al (2010) Phase I study of XMT-1001 given IV every 3 weeks to patients with advanced solid tumors. J Clin Oncol (Meeting Abstracts) 28:e13121

    Google Scholar 

  114. Schluep T et al (2006) Preclinical efficacy of the camptothecin-polymer conjugate IT-101 in multiple cancer models. Clin Cancer Res 12(5):1606–1614

    Article  CAS  PubMed  Google Scholar 

  115. ClinicalTrials.gov (2006) NCT00333502: study of CRLX101 (formerly named IT-101) in the treatment of advanced solid tumors. http://www.clinicaltrials.gov/show/NCT00333502

  116. Weiss GJ et al (2013) First-in-human phase 1/2a trial of CRLX101, a cyclodextrin-containing polymer-camptothecin nanopharmaceutical in patients with advanced solid tumor malignancies. Invest New Drugs 31(4):986–1000

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  117. ClinicalTrials.gov (2011) NCT01380769: a phase 2 study of CRLX101 in patients with advanced non-small cell lung cancer. http://www.clinicaltrials.gov/show/NCT01380769

  118. ClinicalTrials.gov (2008) NCT00802945: study to evaluate the safety and efficacy of NKTR-102 in patients with metastatic or locally advanced breast cancer. http://www.clinicaltrials.gov/show/NCT00802945

  119. Awada A et al (2013) Two schedules of etirinotecan pegol (NKTR-102) in patients with previously treated metastatic breast cancer: a randomised phase 2 study. Lancet Oncol 14(12):1216–1225

    Article  CAS  PubMed  Google Scholar 

  120. ClinicalTrials.gov (2011) NCT01492101: the BEACON study (breast cancer outcomes with NKTR-102)

    Google Scholar 

  121. Jung CW, Jacobs P (1995) Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil. Magn Reson Imaging 13(5):661–674

    Article  CAS  PubMed  Google Scholar 

  122. Anzai Y, Prince M (1997) Iron oxide-enhanced MR lymphography: the evaluation of cervical lymph node metastases in head and neck cancer. J Magn Reson Imaging 7(1):75–81

    Article  CAS  PubMed  Google Scholar 

  123. ClinicalTrials.gov (2005) NCT00147238: a validation study of MR lymphangiography using SPIO, a new lymphotropic superparamagnetic nanoparticle contrast. http://www.clinicaltrials.gov/show/NCT00147238

  124. Heesakkers RA et al (2009) Prostate cancer: detection of lymph node metastases outside the routine surgical area with purpose: methods: results: conclusion. Radiology 251(2):408–414

    Article  PubMed  Google Scholar 

  125. Spinowitz BS et al (2005) The safety and efficacy of ferumoxytol therapy in anemic chronic kidney disease patients. Kidney Int 68(4):1801–1807

    Article  CAS  PubMed  Google Scholar 

  126. Neuwelt EA et al (2009) Ultrasmall superparamagnetic iron oxides (USPIOs): a future alternative magnetic resonance (MR) contrast agent for patients at risk for nephrogenic systemic fibrosis (NSF)? Kidney Int 75(5):465–474

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  127. ClinicalTrials.gov (2013) NCT01895829: ferumoxytol—iron oxide nanoparticle magnetic resonance dynamic contrast enhanced MRI. http://www.clinicaltrials.gov/show/NCT01895829

  128. ClinicalTrials.gov (2009) NCT00920023: pre-operative staging of pancreatic cancer using superparamagnetic iron oxide magnetic resonance imaging (SPIO MRI). http://www.clinicaltrials.gov/show/NCT00920023

  129. ClinicalTrials.gov (2013) NCT01927887: pre-operative nodal staging of thyroid cancer using ultra-small superparamagnetic iron oxide magnetic resonance imaging (USPIO MRI): preliminary study. http://www.clinicaltrials.gov/show/NCT01927887

  130. ClinicalTrials.gov (2012) NCT01663090: ferumoxytol-enhanced MRI in adult/pedi sarcomas. http://www.clinicaltrials.gov/show/NCT01663090

  131. ClinicalTrials.gov (2008) NCT00769093: assessing dynamic magnetic resonance (MR) imaging in patients with recurrent high grade glioma receiving chemotherapy. http://www.clinicaltrials.gov/show/NCT00769093

  132. Bagwe RP et al (2004) Optimization of dye-doped silica nanoparticles prepared using a reverse microemulsion method. Langmuir 20(19):8336–8342

    Article  CAS  PubMed  Google Scholar 

  133. Benezra M et al (2011) Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J Clin Investig 121(7):2768–2780

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  134. ClinicalTrials.gov (2010) NCT01266096: PET imaging of patients with melanoma and malignant brain tumors using an 124 l-labeled cRGDY silica nanomolecular particle tracer: a microdosing study. http://www.clinicaltrials.gov/show/NCT01266096

  135. ClinicalTrials.gov (2014) NCT02106598: targeted silica nanoparticles for image guided intraoperative sentinel lymph node mapping in head and neck melanoma patients. http://www.clinicaltrials.gov/show/NCT02106598

  136. ClinicalTrials.gov (2011) NCT01411904: study of the detection of lymphoblasts by a novel magnetic needle and nanoparticles in patients with leukemia. http://www.clinicaltrials.gov/show/NCT01411904

  137. Jaetao JE et al (2009) Enhanced leukemia cell detection using a novel magnetic needle and nanoparticles. Cancer Res 69(21):8310–8316

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  138. Kirby R, Eeles R, Neal D (2013) Prostate cancer UK: the blue skies forum. Trends Urol Men’s Health 4(6):39–43

    Article  Google Scholar 

  139. ClinicalTrials.gov (2014) NCT02033447: Magnetic nanoparticle thermoablation-retention and maintenance in the prostate: a Phase 0 study in men (MAGNABLATE I). http://www.clinicaltrials.gov/show/NCT02033447

  140. Maggiorella L et al (2012) Nanoscale radiotherapy with hafnium oxide nanoparticles. Future oncol 8(9):1167–81

    Google Scholar 

  141. ClinicalTrials.gov (2011) NCT01433068: NBTXR3 crystalline nanoparticles and radiation therapy in treating patients with soft tissue sarcoma of the extremity. http://www.clinicaltrials.gov/show/NCT01433068

  142. ClinicalTrials.gov (2013) NCT01946867: NBTXR3 crystalline nanoparticles and radiation therapy in treating patients with locally advanced squamous cell carcinoma of the oral cavity or oropharynx. http://www.clinicaltrials.gov/show/NCT01946867

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Langer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lytton-Jean, A.K.R., Kauffman, K.J., Kaczmarek, J.C., Langer, R. (2015). Cancer Nanotherapeutics in Clinical Trials. In: Mirkin, C., Meade, T., Petrosko, S., Stegh, A. (eds) Nanotechnology-Based Precision Tools for the Detection and Treatment of Cancer. Cancer Treatment and Research, vol 166. Springer, Cham. https://doi.org/10.1007/978-3-319-16555-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16555-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16554-7

  • Online ISBN: 978-3-319-16555-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics