Skip to main content

Part of the book series: Cancer Treatment and Research ((CTAR,volume 166))

Abstract

There are currently no nanoparticle formulations that optimally target diseased cells in the body. A small percentage of nanoparticles reach these cells and most accumulate in cells of the mononuclear phagocytic system. This chapter explores the interactions between nanoparticles and cells that may explain the causes for off-target accumulation of nanoparticles. A greater understanding of the nanoparticle-cellular interactions will lead to improvements in particle design for improved therapeutic outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Park K (2013) Facing the truth about nanotechnology in drug delivery. ACS Nano 7(9):7442–7447

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Jain RK, Stylianopoulos T (2010) Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 7(11):653–664

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Hobbs SK et al (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci USA 95(8):4607–4612

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Stylianopoulos T, Jain RK (2013) Combining two strategies to improve perfusion and drug delivery in solid tumors. Proc Natl Acad Sci USA 110(46):18632–18637

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Chauhan VP, Jain RK (2013) Strategies for advancing cancer nanomedicine. Nat Mater 12(11):958–962

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Jain RK (2013) Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. J Clin Oncol 31(17):2205–2218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Choi HS et al (2007) Renal clearance of quantum dots. Nat Biotechnol 25(10):1165–1170

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Champion JA, Mitragotri S (2006) Role of target geometry in phagocytosis. Proc Natl Acad Sci USA 103(13):4930–4934

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Iversen TG, Frerker N, Sandvig K (2012) Uptake of ricinB-quantum dot nanoparticles by a macropinocytosis-like mechanism. J Nanobiotechnol 10:33

    Article  CAS  Google Scholar 

  10. Rejman J et al (2004) Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J 377(Pt 1):159–169

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Gabrielson NP, Pack DW (2009) Efficient polyethylenimine-mediated gene delivery proceeds via a caveolar pathway in HeLa cells. J Control Release 136(1):54–61

    Article  CAS  PubMed  Google Scholar 

  12. Doherty GJ, McMahon HT (2009) Mechanisms of endocytosis. Annu Rev Biochem 78:857–902

    Article  CAS  PubMed  Google Scholar 

  13. Gao H et al (2013) Ligand modified nanoparticles increases cell uptake, alters endocytosis and elevates glioma distribution and internalization. Sci Rep 3:2534

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Henne WM et al (2010) FCHo proteins are nucleators of clathrin-mediated endocytosis. Science 328(5983):1281–1284

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Honing S et al (2005) Phosphatidylinositol-(4,5)-bisphosphate regulates sorting signal recognition by the clathrin-associated adaptor complex AP2. Mol Cell 18(5):519–531

    Article  PubMed  Google Scholar 

  16. Tsuji T, Yoshitomi H, Usukura J (2013) Endocytic mechanism of transferrin-conjugated nanoparticles and the effects of their size and ligand number on the efficiency of drug delivery. Microscopy (Oxford) 62(3):341–352

    Article  CAS  Google Scholar 

  17. Ehrlich M et al (2004) Endocytosis by random initiation and stabilization of clathrin-coated pits. Cell 118(5):591–605

    Article  CAS  PubMed  Google Scholar 

  18. Cheng Y et al (2007) Cryo-electron tomography of clathrin-coated vesicles: structural implications for coat assembly. J Mol Biol 365(3):892–899

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Veiga E, Cossart P (2005) Listeria hijacks the clathrin-dependent endocytic machinery to invade mammalian cells. Nat Cell Biol 7(9):894–900

    Article  CAS  PubMed  Google Scholar 

  20. Georgieva JV et al (2011) Surface characteristics of nanoparticles determine their intracellular fate in and processing by human blood-brain barrier endothelial cells in vitro. Mol Ther 19(2):318–325

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Sandvig K et al (2008) Clathrin-independent endocytosis: from nonexisting to an extreme degree of complexity. Histochem Cell Biol 129(3):267–276

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Choi CH et al (2013) Mechanism for the endocytosis of spherical nucleic acid nanoparticle conjugates. Proc Natl Acad Sci USA 110(19):7625–7630

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Nevins AK, Thurmond DC (2006) Caveolin-1 functions as a novel Cdc42 guanine nucleotide dissociation inhibitor in pancreatic beta-cells. J Biol Chem 281(28):18961–18972

    Article  CAS  PubMed  Google Scholar 

  24. Bae YM et al (2012) Endocytosis, intracellular transport, and exocytosis of lanthanide-doped upconverting nanoparticles in single living cells. Biomaterials 33(35):9080–9086

    Article  CAS  PubMed  Google Scholar 

  25. Iversen TG, Skotland T, Sandvig K (2011) Endocytosis and intracellular transport of nanoparticles: Present knowledge and need for future studies. Nano Today 6(2):176–185

    Article  CAS  Google Scholar 

  26. Grimmer S, van Deurs B, Sandvig K (2002) Membrane ruffling and macropinocytosis in A431 cells require cholesterol. J Cell Sci 115(Pt 14):2953–2962

    CAS  PubMed  Google Scholar 

  27. Herd H et al (2013) Nanoparticle geometry and surface orientation influence mode of cellular uptake. ACS Nano 7(3):1961–1973

    Article  CAS  PubMed  Google Scholar 

  28. Owens DE 3rd, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307(1):93–102

    Article  CAS  PubMed  Google Scholar 

  29. Rodriguez PL et al (2013) Minimal “Self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 339(6122):971–975

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Tenzer S et al (2013) Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol 8(10):772–781

    Article  CAS  PubMed  Google Scholar 

  31. Tenzer S et al (2011) Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS Nano 5(9):7155–7167

    Article  CAS  PubMed  Google Scholar 

  32. Walkey CD et al (2014) Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano 8(3):2439–2455

    Article  CAS  PubMed  Google Scholar 

  33. Lesniak A et al (2012) Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano 6(7):5845–5857

    Article  CAS  PubMed  Google Scholar 

  34. Ge C et al (2011) Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc Natl Acad Sci USA 108(41):16968–16973

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Sahoo B et al (2007) Spontaneous formation of a protein corona prevents the loss of quantum dot fluorescence in physiological buffers. Chem Phys Lett 445(4–6):217–220

    Article  CAS  Google Scholar 

  36. Albanese A et al (2014) Secreted biomolecules alter the biological identity and cellular interactions of nanoparticles. ACS Nano 8(6):5515–5526

    Article  CAS  PubMed  Google Scholar 

  37. Oh N, Park JH (2014) Surface chemistry of gold nanoparticles mediates their exocytosis in macrophages. ACS Nano 8(6):6232–6241

    Article  CAS  PubMed  Google Scholar 

  38. Salvati A et al (2013) Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol 8:137–143

    Article  CAS  PubMed  Google Scholar 

  39. Walkey CD, Chan WC (2012) Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev 41(7):2780–2799

    Article  CAS  PubMed  Google Scholar 

  40. Chinen AB, Guan CM, Mirkin CA (2014) Spherical nucleic acid nanoparticle conjugates enhance g-quadruplex formation and increase serum protein interactions. Angew Chem Int Ed 54(2):527–531

    Google Scholar 

  41. Kamaly N et al (2012) Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev 41(7):2971–3010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. García KP et al (2014) Zwitterionic coatings: zwitterionic-coated “stealth” nanoparticles for biomedical applications: recent advances in countering biomolecular corona formation and uptake by the mononuclear phagocyte system (small 13/2014). Small 10(13):2505

    Article  Google Scholar 

  43. Walkey CD et al (2012) Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc 134(4):2139–2147

    Article  CAS  PubMed  Google Scholar 

  44. Zhang Y, Kohler N, Zhang M (2002) Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 23(7):1553–1561

    Article  CAS  PubMed  Google Scholar 

  45. Gref R et al (2000) ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B 18(3–4):301–313

    Article  CAS  Google Scholar 

  46. Dai Q, Walkey C, Chan WC (2014) Polyethylene glycol backfilling mitigates the negative impact of the protein corona on nanoparticle cell targeting. Angew Chem Int Ed Engl 53(20):5093–5096

    CAS  PubMed  Google Scholar 

  47. Prapainop K, Witter DP, Wentworth P Jr (2012) A chemical approach for cell-specific targeting of nanomaterials: small-molecule-initiated misfolding of nanoparticle corona proteins. J Am Chem Soc 134(9):4100–4103

    Article  CAS  PubMed  Google Scholar 

  48. Kah JC et al (2012) Exploiting the protein corona around gold nanorods for loading and triggered release. ACS Nano 6(8):6730–6740

    Article  CAS  PubMed  Google Scholar 

  49. Monopoli MP et al (2012) Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol 7(12):779–786

    Article  CAS  PubMed  Google Scholar 

  50. Gratton SE et al (2008) Microfabricated particles for engineered drug therapies: elucidation into the mechanisms of cellular internalization of PRINT particles. Pharm Res 25(12):2845–2852

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Chithrani BD, Ghazani AA, Chan WC (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6(4):662–668

    Article  CAS  PubMed  Google Scholar 

  52. Lu F et al (2009) Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small 5(12):1408–1413

    Article  CAS  PubMed  Google Scholar 

  53. Varela JA et al (2012) Quantifying size-dependent interactions between fluorescently labeled polystyrene nanoparticles and mammalian cells. J Nanobiotechnol 10:39

    Article  CAS  Google Scholar 

  54. Cho EC, Zhang Q, Xia Y (2011) The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. Nat Nanotechnol 6(6):385–391

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Agarwal R et al (2013) Mammalian cells preferentially internalize hydrogel nanodiscs over nanorods and use shape-specific uptake mechanisms. Proc Natl Acad Sci USA 110(43):17247–17252

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Wiley DT et al (2013) Transcytosis and brain uptake of transferrin-containing nanoparticles by tuning avidity to transferrin receptor. Proc Natl Acad Sci USA 110(21):8662–8667

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Gao H, Shi W, Freund LB (2005) Mechanics of receptor-mediated endocytosis. Proc Natl Acad Sci USA 102(27):9469–9474

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Henne WM et al (2007) Structure and analysis of FCHo2 F-BAR domain: a dimerizing and membrane recruitment module that effects membrane curvature. Structure 15(7):839–852

    Article  CAS  PubMed  Google Scholar 

  59. Harari D, Yarden Y (2000) Molecular mechanisms underlying ErbB2/HER2 action in breast cancer. Oncogene 19(53):6102–6114

    Article  CAS  PubMed  Google Scholar 

  60. Jiang W et al (2008) Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 3(3):145–150

    Article  CAS  PubMed  Google Scholar 

  61. Salvati A et al (2013) Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol 8(2):137–143

    Article  CAS  PubMed  Google Scholar 

  62. Plank C et al (1994) The influence of endosome-disruptive peptides on gene transfer using synthetic virus-like gene transfer systems. J Biol Chem 269(17):12918–12924

    CAS  PubMed  Google Scholar 

  63. Cho YW, Kim JD, Park K (2003) Polycation gene delivery systems: escape from endosomes to cytosol. J Pharm Pharmacol 55(6):721–734

    Article  CAS  PubMed  Google Scholar 

  64. Hatakeyama H et al (2009) A pH-sensitive fusogenic peptide facilitates endosomal escape and greatly enhances the gene silencing of siRNA-containing nanoparticles in vitro and in vivo. J Controlled Release 139(2):127–132

    Article  CAS  Google Scholar 

  65. Yanes RE et al (2013) Involvement of lysosomal exocytosis in the excretion of mesoporous silica nanoparticles and enhancement of the drug delivery effect by exocytosis inhibition. Small 9(5):697–704

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Chithrani BD, Chan WC (2007) Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett 7(6):542–550

    Google Scholar 

  67. Kim CS et al (2014) The role of surface functionality in nanoparticle exocytosis. Adv Healthc Mater 3:5–7

    Google Scholar 

  68. Chou LY, Ming K, Chan WC (2011) Strategies for the intracellular delivery of nanoparticles. Chem Soc Rev 40(1):233–245

    Article  CAS  PubMed  Google Scholar 

  69. Ashley CE et al (2011) The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nat Mater 10(5):389–397

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warren C. W. Chan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Syed, A., Chan, W.C.W. (2015). How Nanoparticles Interact with Cancer Cells. In: Mirkin, C., Meade, T., Petrosko, S., Stegh, A. (eds) Nanotechnology-Based Precision Tools for the Detection and Treatment of Cancer. Cancer Treatment and Research, vol 166. Springer, Cham. https://doi.org/10.1007/978-3-319-16555-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16555-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16554-7

  • Online ISBN: 978-3-319-16555-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics