Advertisement

Laboratory Models for Central Nervous System Tumor Stem Cell Research

  • Imad Saeed Khan
  • Moneeb EhteshamEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 853)

Abstract

Central nervous system (CNS) tumors are complex organ systems comprising of a neoplastic component with associated vasculature, inflammatory cells, and reactive cellular and extracellular components. Research has identified a subset of cells in CNS tumors that portray defining properties of neural stem cells, namely, that of self-renewal and multi-potency. Growing evidence suggests that these tumor stem cells (TSC) play an important role in the maintenance and growth of the tumor. Furthermore, these cells have also been shown to be refractory to conventional therapy and may be crucial for tumor recurrence and metastasis. Current investigations are focusing on isolating these TSC from CNS tumors to investigate their unique biological processes. This understanding will help identify and develop more effective and comprehensive treatment strategies. This chapter provides an overview of some of the most commonly used laboratory models for CNSTSC research.

Keywords

Glioma stem cells Tumor stem cells Cancer stem cells Laboratory models Neurosphere culture Matrigel-based assays Orthotopic culture Mathematical models Animal models 

References

  1. 1.
    Rich JN, Eyler CE. Cancer stem cells in brain tumor biology. Cold Spring Harb Symp Quant Biol. 2008;73:411–20.CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CHM, Jones DL, et al. Cancer stem cells–perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res. 2006;66(19):9339–44.CrossRefPubMedGoogle Scholar
  3. 3.
    Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367(6464):645–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3(7):730–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Taylor MD, Poppleton H, Fuller C, Su X, Liu Y, Jensen P, et al. Radial glia cells are candidate stem cells of ependymoma. Cancer Cell. 2005;8(4):323–35.CrossRefPubMedGoogle Scholar
  6. 6.
    Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrionis FD, Steindler DA. Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia. 2002;39(3):193–206.CrossRefPubMedGoogle Scholar
  7. 7.
    Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A. 2003;100(25):15178–83.CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63(18):5821–8.PubMedGoogle Scholar
  9. 9.
    Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 2004;64(19):7011–21.CrossRefPubMedGoogle Scholar
  10. 10.
    Yuan X, Curtin J, Xiong Y, Liu G, Waschsmann-Hogiu S, Farkas DL, et al. Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene. 2004;23(58):9392–400.CrossRefPubMedGoogle Scholar
  11. 11.
    Fan X, Eberhart CG. Medulloblastoma stem cells. J Clin Oncol. 2008;26(17):2821–7.CrossRefPubMedGoogle Scholar
  12. 12.
    deCarvalho AC, Nelson K, Lemke N, Lehman NL, Arbab AS, Kalkanis S, et al. Gliosarcoma stem cells undergo glial and mesenchymal differentiation in vivo. Stem Cells. 2010;28(2):181–90.PubMedCentralPubMedGoogle Scholar
  13. 13.
    Rycaj K, Tang DG. Cancer stem cells and radioresistance. Int J Radiat Biol. 2014;7.Google Scholar
  14. 14.
    Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444(7120):756–60.CrossRefPubMedGoogle Scholar
  15. 15.
    Vinogradov S, Wei X. Cancer stem cells and drug resistance: the potential of nanomedicine. Nanomedicine. 2012;7(4):597–615.CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Eyler CE, Rich JN. Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol. 2008;26(17):2839–45.CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J, Oefner PJ, et al. CD133(+) and CD133(−) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res. 2007;67(9):4010–5.CrossRefPubMedGoogle Scholar
  18. 18.
    Wang J, Sakariassen PØ, Tsinkalovsky O, Immervoll H, Bøe SO, Svendsen A, et al. CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells. Int J Cancer. 2008;122(4):761–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Ogden AT, Waziri AE, Lochhead RA, Fusco D, Lopez K, Ellis JA, et al. Identification of A2B5+CD133− tumor-initiating cells in adult human gliomas. Neurosurgery. 2008;62(2):505–14. discussion 514–515.CrossRefPubMedGoogle Scholar
  20. 20.
    Reynolds BA, Rietze RL. Neural stem cells and neurospheres–re-evaluating the relationship. Nat Methods. 2005;2(5):333–6.CrossRefPubMedGoogle Scholar
  21. 21.
    Kuhn HG, Winkler J, Kempermann G, Thal LJ, Gage FH. Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J Neurosci. 1997;17(15):5820–9.PubMedGoogle Scholar
  22. 22.
    Craig CG, Tropepe V, Morshead CM, Reynolds BA, Weiss S, van der Kooy D. In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. J Neurosci. 1996;16(8):2649–58.PubMedGoogle Scholar
  23. 23.
    Rai KS, Hattiangady B, Shetty AK. Enhanced production and dendritic growth of new dentate granule cells in the middle-aged hippocampus following intracerebroventricular FGF-2 infusions. Eur J Neurosci. 2007;26(7):1765–79.CrossRefPubMedGoogle Scholar
  24. 24.
    Yoshimura S, Takagi Y, Harada J, Teramoto T, Thomas SS, Waeber C, et al. FGF-2 regulation of neurogenesis in adult hippocampus after brain injury. Proc Natl Acad Sci U S A. 2001;98(10):5874–9.CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Yoshimura S, Teramoto T, Whalen MJ, Irizarry MC, Takagi Y, Qiu J, et al. FGF-2 regulates neurogenesis and degeneration in the dentate gyrus after traumatic brain injury in mice. J Clin Invest. 2003;112(8):1202–10.CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Nakano I, Kornblum HI. Methods for analysis of brain tumor stem cell and neural stem cell self-renewal. Methods Mol Biol. 2009;568:37–56.CrossRefPubMedGoogle Scholar
  27. 27.
    Gage FH. Mammalian neural stem cells. Science. 2000;287(5457):1433–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Lie DC, Song H, Colamarino SA, Ming G, Gage FH. Neurogenesis in the adult brain: new strategies for central nervous system diseases. Annu Rev Pharmacol Toxicol. 2004;44:399–421.CrossRefPubMedGoogle Scholar
  29. 29.
    Vescovi AL, Galli R, Reynolds BA. Brain tumour stem cells. Nat Rev Cancer. 2006;6(6):425–36.CrossRefPubMedGoogle Scholar
  30. 30.
    Hermann A, Maisel M, Liebau S, Gerlach M, Kleger A, Schwarz J, et al. Mesodermal cell types induce neurogenesis from adult human hippocampal progenitor cells. J Neurochem. 2006;98(2):629–40.CrossRefPubMedGoogle Scholar
  31. 31.
    Chaichana K, Zamora-Berridi G, Camara-Quintana J, Quiñones-Hinojosa A. Neurosphere assays: growth factors and hormone differences in tumor and nontumor studies. Stem Cells. 2006;24(12):2851–7.CrossRefPubMedGoogle Scholar
  32. 32.
    Gritti A, Galli R, Vescovi AL. Clonal analyses and cryopreservation of neural stem cell cultures. Methods Mol Biol. 2008;438:173–84.CrossRefPubMedGoogle Scholar
  33. 33.
    Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A. HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol. 2007;17(2):165–72.CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Ma Z, Lin M, Li K, Fu Y, Liu X, Yang D, et al. Knocking down SMC1A inhibits growth and leads to G2/M arrest in human glioma cells. Int J Clin Exp Pathol. 2013;6(5):862–9.PubMedCentralPubMedGoogle Scholar
  35. 35.
    Li G, Wang R, Gao J, Deng K, Wei J, Wei Y. RNA interference-mediated silencing of iASPP induces cell proliferation inhibition and G0/G1 cell cycle arrest in U251 human glioblastoma cells. Mol Cell Biochem. 2011;350(1–2):193–200.CrossRefPubMedGoogle Scholar
  36. 36.
    George J, Banik NL, Ray SK. Knockdown of hTERT and concurrent treatment with interferon-gamma inhibited proliferation and invasion of human glioblastoma cell lines. Int J Biochem Cell Biol. 2010;42(7):1164–73.CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Guo G, Kuai D, Cai S, Xue N, Liu Y, Hao J, et al. Knockdown of FRAT1 expression by RNA interference inhibits human glioblastoma cell growth, migration and invasion. PLoS One. 2013;8(4):e61206.CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Ehtesham M, Mapara KY, Stevenson CB, Thompson RC. CXCR4 mediates the proliferation of glioblastoma progenitor cells. Cancer Lett. 2009;274(2):305–12.CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Ehtesham M, Kabos P, Gutierrez MAR, Chung NHC, Griffith TS, Black KL, et al. Induction of glioblastoma apoptosis using neural stem cell-mediated delivery of tumor necrosis factor-related apoptosis-inducing ligand. Cancer Res. 2002;62(24):7170–4.PubMedGoogle Scholar
  40. 40.
    Fael Al-Mayhani TM, Ball SLR, Zhao J-W, Fawcett J, Ichimura K, Collins PV, et al. An efficient method for derivation and propagation of glioblastoma cell lines that conserves the molecular profile of their original tumours. J Neurosci Methods. 2009;176(2):192–9.CrossRefPubMedGoogle Scholar
  41. 41.
    Snyder EY, Deitcher DL, Walsh C, Arnold-Aldea S, Hartwieg EA, Cepko CL. Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell. 1992;68(1):33–51.CrossRefPubMedGoogle Scholar
  42. 42.
    Parker MA, Anderson JK, Corliss DA, Abraria VE, Sidman RL, Park KI, et al. Expression profile of an operationally-defined neural stem cell clone. Exp Neurol. 2005;194(2):320–32.CrossRefPubMedGoogle Scholar
  43. 43.
    Suslov ON, Kukekov VG, Ignatova TN, Steindler DA. Neural stem cell heterogeneity demonstrated by molecular phenotyping of clonal neurospheres. Proc Natl Acad Sci U S A. 2002;99(22):14506–11.CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Kukekov VG, Laywell ED, Thomas LB, Steindler DA. A nestin-negative precursor cell from the adult mouse brain gives rise to neurons and glia. Glia. 1997;21(4):399–407.CrossRefPubMedGoogle Scholar
  45. 45.
    Singec I, Knoth R, Meyer RP, Maciaczyk J, Volk B, Nikkhah G, et al. Defining the actual sensitivity and specificity of the neurosphere assay in stem cell biology. Nat Methods. 2006;3(10):801–6.CrossRefPubMedGoogle Scholar
  46. 46.
    Reynolds BA, Tetzlaff W, Weiss S. A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci. 1992;12(11):4565–74.PubMedGoogle Scholar
  47. 47.
    Reynolds BA, Weiss S. Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol. 1996;175(1):1–13.CrossRefPubMedGoogle Scholar
  48. 48.
    Guerrero-Cázares H, Chaichana KL, Quiñones-Hinojosa A. Neurosphere culture and human organotypic model to evaluate brain tumor stem cells. Methods Mol Biol. 2009;568:73–83.CrossRefPubMedCentralPubMedGoogle Scholar
  49. 49.
    Parmar M, Sjöberg A, Björklund A, Kokaia Z. Phenotypic and molecular identity of cells in the adult subventricular zone in vivo and after expansion in vitro. Mol Cell Neurosci. 2003;24(3):741–52.CrossRefPubMedGoogle Scholar
  50. 50.
    Yu S, Yang X, Zhang B, Ming H, Chen C, Ren B, et al. Enhanced invasion in vitro and the distribution patterns in vivo of CD133+ glioma stem cells. Chin Med J (Engl). 2011; 124(17):2599–604.Google Scholar
  51. 51.
    M D Brooks SA. In vitro invasion assay using Matrigel®. In: Brooks SA, Schumacher U, editors. Metastasis research protocols. Humana Press; p. 61–70. http://link.springer.com/protocol/10.1385/1-59259-137-X%3A061. Accessed 20 Jun 2013.
  52. 52.
    Qiu B, Zhang D, Tao J, Tie X, Wu A, Wang Y. Human brain glioma stem cells are more invasive than their differentiated progeny cells in vitro. J Clin Neurosci. 2012;19(1):130–4.CrossRefPubMedGoogle Scholar
  53. 53.
    Qiu B, Zhang D, Wang Y, Ou S, Wang J, Tao J, et al. Interleukin-6 is overexpressed and augments invasiveness of human glioma stem cells in vitro. Clin Exp Metastasis. 2013;30(8):1009–18.CrossRefPubMedGoogle Scholar
  54. 54.
    Inoue A, Takahashi H, Harada H, Kohno S, Ohue S, Kobayashi K, et al. Cancer stem-like cells of glioblastoma characteristically express MMP-13 and display highly invasive activity. Int J Oncol. 2010;37(5):1121–31.PubMedGoogle Scholar
  55. 55.
    Koizumi S, Gu C, Amano S, Yamamoto S, Ihara H, Tokuyama T, et al. Migration of mouse-induced pluripotent stem cells to glioma-conditioned medium is mediated by tumor-associated specific growth factors. Oncol Lett. 2011;2(2):283–8.PubMedCentralPubMedGoogle Scholar
  56. 56.
    Hata N, Shinojima N, Gumin J, Yong R, Marini F, Andreeff M, et al. Platelet-derived growth factor BB mediates the tropism of human mesenchymal stem cells for malignant gliomas. Neurosurgery. 2010;66(1):144–56. discussion 156–157.CrossRefPubMedCentralPubMedGoogle Scholar
  57. 57.
    Nobes CD, Hall A. Rho GTPases control polarity, protrusion, and adhesion during cell movement. J Cell Biol. 1999;144(6):1235–44.CrossRefPubMedCentralPubMedGoogle Scholar
  58. 58.
    McDonough W, Tran N, Giese A, Norman SA, Berens ME. Altered gene expression in human astrocytoma cells selected for migration: I. Thromboxane synthase. J Neuropathol Exp Neurol. 1998;57(5):449–55.CrossRefPubMedGoogle Scholar
  59. 59.
    Wichterle H, Alvarez-Dolado M, Erskine L, Alvarez-Buylla A. Permissive corridor and diffusible gradients direct medial ganglionic eminence cell migration to the neocortex. Proc Natl Acad Sci U S A. 2003;100(2):727–32.CrossRefPubMedCentralPubMedGoogle Scholar
  60. 60.
    Albini A, Iwamoto Y, Kleinman HK, Martin GR, Aaronson SA, Kozlowski JM, et al. A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res. 1987;47(12):3239–45.PubMedGoogle Scholar
  61. 61.
    Amar AP, DeArmond SJ, Spencer DR, Coopersmith PF, Ramos DM, Rosenblum ML. Development of an in vitro extracellular matrix assay for studies of brain tumor cell invasion. J Neurooncol. 1994;20(1):1–15.CrossRefPubMedGoogle Scholar
  62. 62.
    Bernstein JJ, Goldberg WJ, Laws Jr ER, Conger D, Morreale V, Wood LR. C6 glioma cell invasion and migration of rat brain after neural homografting: ultrastructure. Neurosurgery. 1990;26(4):622–8.CrossRefPubMedGoogle Scholar
  63. 63.
    Bjerkvig R, Laerum OD, Mella O. Glioma cell interactions with fetal rat brain aggregates in vitro and with brain tissue in vivo. Cancer Res. 1986;46(8):4071–9.PubMedGoogle Scholar
  64. 64.
    Bjerkvig R, Tønnesen A, Laerum OD, Backlund EO. Multicellular tumor spheroids from human gliomas maintained in organ culture. J Neurosurg. 1990;72(3):463–75.CrossRefPubMedGoogle Scholar
  65. 65.
    Chicoine MR, Silbergeld DL. Invading C6 glioma cells maintaining tumorigenicity. J Neurosurg. 1995;83(4):665–71.CrossRefPubMedGoogle Scholar
  66. 66.
    Erkell LJ, Schirrmacher V. Quantitative in vitro assay for tumor cell invasion through extracellular matrix or into protein gels. Cancer Res. 1988;48(23):6933–7.PubMedGoogle Scholar
  67. 67.
    Kramer RH, Bensch KG, Wong J. Invasion of reconstituted basement membrane matrix by metastatic human tumor cells. Cancer Res. 1986;46(4 Pt 2):1980–9.PubMedGoogle Scholar
  68. 68.
    Pilkington GJ, Bjerkvig R, De Ridder L, Kaaijk P. In vitro and in vivo models for the study of brain tumour invasion. Anticancer Res. 1997;17(6B):4107–9.PubMedGoogle Scholar
  69. 69.
    Gähwiler BH. Slice cultures of cerebellar, hippocampal and hypothalamic tissue. Experientia. 1984;40(3):235–43.CrossRefPubMedGoogle Scholar
  70. 70.
    Merz F, Gaunitz F, Dehghani F, Renner C, Meixensberger J, Gutenberg A, et al. Organotypic slice cultures of human glioblastoma reveal different susceptibilities to treatments. Neuro Oncol. 2013;15(6):670–81.CrossRefPubMedCentralPubMedGoogle Scholar
  71. 71.
    Jung S, Kim H-W, Lee J-H, Kang S-S, Rhu H-H, Jeong Y-I, et al. Brain tumor invasion model system using organotypic brain-slice culture as an alternative to in vivo model. J Cancer Res Clin Oncol. 2002;128(9):469–76.CrossRefPubMedGoogle Scholar
  72. 72.
    Chaichana KL, Capilla-Gonzalez V, Gonzalez-Perez O, Pradilla G, Han J, Olivi A, et al. Preservation of glial cytoarchitecture from ex vivo human tumor and non-tumor cerebral cortical explants: a human model to study neurological diseases. J Neurosci Methods. 2007;164(2):261–70.CrossRefPubMedCentralPubMedGoogle Scholar
  73. 73.
    Shimizu F, Hovinga KE, Metzner M, Soulet D, Tabar V. Organotypic explant culture of glioblastoma multiforme and subsequent single-cell suspension. Curr Protoc Stem Cell Biol. 2011;Chapter 3:Unit3.5.Google Scholar
  74. 74.
    Hovinga KE, Shimizu F, Wang R, Panagiotakos G, Van Der Heijden M, Moayedpardazi H, et al. Inhibition of notch signaling in glioblastoma targets cancer stem cells via an endothelial cell intermediate. Stem Cells. 2010;28(6):1019–29.CrossRefPubMedGoogle Scholar
  75. 75.
    Pedersen PH, Edvardsen K, Garcia-Cabrera I, Mahesparan R, Thorsen J, Mathisen B, et al. Migratory patterns of lac-z transfected human glioma cells in the rat brain. Int J Cancer. 1995;62(6):767–71.CrossRefPubMedGoogle Scholar
  76. 76.
    Engebraaten O, Bjerkvig R, Lund-Johansen M, Wester K, Pedersen PH, Mørk S, et al. Interaction between human brain tumour biopsies and fetal rat brain tissue in vitro. Acta Neuropathol. 1990;81(2):130–40.CrossRefPubMedGoogle Scholar
  77. 77.
    Aaberg-Jessen C, Nørregaard A, Christensen K, Pedersen CB, Andersen C, Kristensen BW. Invasion of primary glioma- and cell line-derived spheroids implanted into corticostriatal slice cultures. Int J Clin Exp Pathol. 2013;6(4):546–60.PubMedCentralPubMedGoogle Scholar
  78. 78.
    Zhu TS, Costello MA, Talsma CE, Flack CG, Crowley JG, Hamm LL, et al. Endothelial cells create a stem cell niche in glioblastoma by providing NOTCH ligands that nurture self-renewal of cancer stem-like cells. Cancer Res. 2011;71(18):6061–72.CrossRefPubMedCentralPubMedGoogle Scholar
  79. 79.
    Steel GG. Growth kinetics of tumours: cell population kinetics in relation to the growth and treatment of cancer. England: Clarendon; 1977. p. 380.Google Scholar
  80. 80.
    Ganguly R, Puri IK. Mathematical model for the cancer stem cell hypothesis. Cell Prolif. 2006;39(1):3–14.CrossRefPubMedGoogle Scholar
  81. 81.
    Ganguly R, Puri IK. Mathematical model for chemotherapeutic drug efficacy in arresting tumour growth based on the cancer stem cell hypothesis. Cell Prolif. 2007;40(3):338–54.CrossRefPubMedGoogle Scholar
  82. 82.
    Molina-Peña R, Álvarez MM. A simple mathematical model based on the cancer stem cell hypothesis suggests kinetic commonalities in solid tumor growth. PLoS One. 2012;7(2):e26233.CrossRefPubMedCentralPubMedGoogle Scholar
  83. 83.
    Weekes SL, Barker B, Bober S, Cisneros K, Cline J, Thompson A, et al. A multicompartment mathematical model of cancer stem cell-driven tumor growth dynamics. Bull Math Biol. 2014;76(7):1762–82.CrossRefPubMedGoogle Scholar
  84. 84.
    Vainstein V, Kirnasovsky OU, Kogan Y, Agur Z. Strategies for cancer stem cell elimination: insights from mathematical modeling. J Theor Biol. 2012;298:32–41.CrossRefPubMedGoogle Scholar
  85. 85.
    Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105–11.CrossRefPubMedGoogle Scholar
  86. 86.
    Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer. 2003;3(12):895–902.CrossRefPubMedGoogle Scholar
  87. 87.
    Dick JE. Breast cancer stem cells revealed. Proc Natl Acad Sci U S A. 2003;100(7):3547–9.CrossRefPubMedCentralPubMedGoogle Scholar
  88. 88.
    Tysnes BB. Tumor-initiating and -propagating cells: cells that we would like to identify and control. Neoplasia N Y N. 2010 Jul;12(7):506–15.Google Scholar
  89. 89.
    Choi SA, Lee JY, Phi JH, Wang K-C, Park C-K, Park S-H, et al. Identification of brain tumour initiating cells using the stem cell marker aldehyde dehydrogenase. Eur J Cancer. 2014;50(1):137–49.CrossRefPubMedGoogle Scholar
  90. 90.
    Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432(7015):396–401.CrossRefPubMedGoogle Scholar
  91. 91.
    Lathia JD, Gallagher J, Myers JT, Li M, Vasanji A, McLendon RE, et al. Direct in vivo evidence for tumor propagation by glioblastoma cancer stem cells. PLoS One. 2011;6(9):e24807.CrossRefPubMedCentralPubMedGoogle Scholar
  92. 92.
    Wu A, Oh S, Wiesner SM, Ericson K, Chen L, Hall WA, et al. Persistence of CD133+ cells in human and mouse glioma cell lines: detailed characterization of GL261 glioma cells with cancer stem cell-like properties. Stem Cells Dev. 2008;17(1):173–84.CrossRefPubMedGoogle Scholar
  93. 93.
    Kelly PN, Dakic A, Adams JM, Nutt SL, Strasser A. Tumor growth need not be driven by rare cancer stem cells. Science. 2007;317(5836):337.CrossRefPubMedGoogle Scholar
  94. 94.
    Gupta PB, Chaffer CL, Weinberg RA. Cancer stem cells: mirage or reality? Nat Med. 2009;15(9):1010–2.CrossRefPubMedGoogle Scholar
  95. 95.
    Dovey MC, Zon LI. Defining cancer stem cells by xenotransplantation in zebrafish. Methods Mol Biol. 2009;568:1–5.CrossRefPubMedGoogle Scholar
  96. 96.
    Yang X-J, Cui W, Gu A, Xu C, Yu S-C, Li T-T, et al. A novel zebrafish xenotransplantation model for study of glioma stem cell invasion. PLoS One. 2013;8(4):e61801.CrossRefPubMedCentralPubMedGoogle Scholar
  97. 97.
    White RM, Sessa A, Burke C, Bowman T, LeBlanc J, Ceol C, et al. Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell. 2008;2(2):183–9.CrossRefPubMedCentralPubMedGoogle Scholar
  98. 98.
    Zhao H, Tang C, Cui K, Ang B-T, Wong STC. A screening platform for glioma growth and invasion using bioluminescence imaging. J Neurosurg. 2009;111(2):238–46.CrossRefPubMedGoogle Scholar
  99. 99.
    Sato A, Klaunberg B, Tolwani R. In vivo bioluminescence imaging. Comp Med. 2004;54(6):631–4.PubMedGoogle Scholar
  100. 100.
    Taylor AM, Zon LI. Zebrafish tumor assays: the state of transplantation. Zebrafish. 2009;6(4):339–46.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Section of NeurosurgeryGeisel School of Medicine at DartmouthLebanonUSA
  2. 2.Department of Neurological SurgeryVanderbilt University Medical CenterNashvilleUSA

Personalised recommendations