Skip to main content

The Role of Stem Cells in Pediatric Central Nervous System Malignancies

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 853))

Abstract

Representing the leading cause of childhood cancer mortality, pediatric brain tumors are comprised of diverse histological features, genetic perturbations, cellular populations, treatment protocols, and clinical outcomes. In this chapter we discuss recent and emerging data that implicate cancer stem cells (also known as brain tumor-initiating cells) in initiating and maintaining the growth of a number of pediatric brain tumors including: medulloblastoma, supratentorial primitive neuroectodermal tumor, atypical teratoid/rhabdoid tumor, ependymoma, low-grade glioma, glioblastoma, diffuse intrinsic pontine glioma, germ cell tumor, and craniopharyngioma. The development of a stem cell framework for the study and treatment of these tumors will enable future clinical approaches to harness the heterogeneous cellular and genomic landscape of these solid tumors as an avenue for developing targeted patient-oriented therapies, thereby improving the overall survivorship for the most lethal childhood cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Louis DN, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114:97–109. doi:10.1007/s00401-007-0243-4.

    PubMed Central  PubMed  Google Scholar 

  2. Clarke MF, et al. Cancer stem cells–perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res. 2006;66:9339–44. doi:10.1158/0008-5472.CAN-06-3126.

    CAS  PubMed  Google Scholar 

  3. Magee JA, Piskounova E, Morrison SJ. Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell. 2012;21:283–96. doi:10.1016/j.ccr.2012.03.003. [pii] S1535-6108(12)00086-4.

    CAS  PubMed  Google Scholar 

  4. Reynolds BA, Weiss S. Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol. 1996;175:1–13.

    CAS  PubMed  Google Scholar 

  5. Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 1992;255:1707–10.

    CAS  PubMed  Google Scholar 

  6. Uchida N, et al. Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci U S A. 2000;97:14720–5. doi:10.1073/pnas.97.26.14720.

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Singh SK, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63:5821–8.

    CAS  PubMed  Google Scholar 

  8. Singh SK, et al. Identification of human brain tumour initiating cells. Nature. 2004;432:396–401. doi:10.1038/nature03128. pii: nature03128.

    CAS  PubMed  Google Scholar 

  9. Hemmati HD, et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A. 2003;100:15178–83. doi:10.1073/pnas.2036535100.

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Panosyan EH, et al. Clinical outcome in pediatric glial and embryonal brain tumors correlates with in vitro multi-passageable neurosphere formation. Pediatr Blood Cancer. 2010;55:644–51. doi:10.1002/pbc.22627.

    PubMed Central  PubMed  Google Scholar 

  11. CBTRUS. Primary brain and central nervous system tumors diagnosed in the United States in 2004–2008. 2012.

    Google Scholar 

  12. Cho YJ, et al. Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome. J Clin Oncol. 2011;29:1424–30. doi:10.1200/JCO.2010.28.5148.

    PubMed Central  PubMed  Google Scholar 

  13. Kool M, et al. Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS ONE. 2008; 3:e3088. doi:10.1371/journal.pone.0003088.t001.

    PubMed Central  PubMed  Google Scholar 

  14. Northcott PA, et al. Medulloblastoma comprises four distinct molecular variants. J Clin Oncol. 2011;29:1408–14. doi:10.1200/JCO.2009.27.4324.

    PubMed  Google Scholar 

  15. Pomeroy SL, et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature. 2002;415:436–42. doi:10.1038/415436a.

    CAS  PubMed  Google Scholar 

  16. Thompson MC, et al. Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. J Clin Oncol. 2006;24:1924–31. doi:10.1200/JCO.2005.04.4974.

    CAS  PubMed  Google Scholar 

  17. Kool M, et al. Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol. 2012;123:473–84. doi:10.1007/s00401-012-0958-8.

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Taylor MD, et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol. 2012;123:465–72. doi:10.1007/s00401-011-0922-z.

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Pei Y, et al. An animal model of MYC-driven medulloblastoma. Cancer Cell. 2012;21:155–67. doi:10.1016/j.ccr.2011.12.021. pii: S1535-6108(11)00483-1.

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Gibson P et al. Subtypes of medulloblastoma have distinct developmental origins. Nature. 2010;1–5. doi:10.1038/nature09587.

    Google Scholar 

  21. Kawauchi D, et al. A mouse model of the most aggressive subgroup of human medulloblastoma. Cancer Cell. 2012;21:168–80. doi:10.1016/j.ccr.2011.12.023. pii: S1535-6108(12)00002-5.

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Clifford SC, et al. Wnt/Wingless pathway activation and chromosome 6 loss characterize a distinct molecular sub-group of medulloblastomas associated with a favorable prognosis. Cell Cycle. 2006;5:2666–70.

    CAS  PubMed  Google Scholar 

  23. Ellison DW, et al. beta-Catenin status predicts a favorable outcome in childhood medulloblastoma: the United Kingdom Children’s Cancer Study Group Brain Tumour Committee. J Clin Oncol. 2005;23:7951–7. doi:10.1200/JCO.2005.01.5479.

    CAS  PubMed  Google Scholar 

  24. Fattet S, et al. Beta-catenin status in paediatric medulloblastomas: correlation of immunohistochemical expression with mutational status, genetic profiles, and clinical characteristics. J Pathol. 2009;218:86–94. doi:10.1002/path.2514.

    CAS  PubMed  Google Scholar 

  25. Ellison DW. Childhood medulloblastoma: novel approaches to the classification of a heterogeneous disease. Acta Neuropathol. 2010;120:305–16. doi:10.1007/s00401-010-0726-6.

    PubMed  Google Scholar 

  26. Wright J. Neurocytoma or neuroblastoma, a kind of tumor not generally recognized. J Exp Med. 1910;12(4):556–61.

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Bailey P, Cushing H. Medulloblastoma cerebelli: a common type of midcerebellar glioma of childhood. Arch Neurol Psychiatry. 1925;14:192–224. doi:10.1001/archneurpsyc.1925.02200140055002.

    Google Scholar 

  28. Fuccillo M, Joyner AL, Fishell G. Morphogen to mitogen: the multiple roles of hedgehog signalling in vertebrate neural development. Nat Rev Neurosci. 2006;7:772–83. doi:10.1038/nrn1990. pii: nrn1990.

    CAS  PubMed  Google Scholar 

  29. Wang VY, Zoghbi HY. Genetic regulation of cerebellar development. Nat Rev Neurosci. 2001;2:489–91.

    Google Scholar 

  30. Sotelo C. Cellular and genetic regulation of the development of the cerebellar system. Prog Neurobiol. 2004;72:295–339. doi:10.1016/j.pneurobio.2004.03.004. pii: S0301008204000401.

    CAS  PubMed  Google Scholar 

  31. Wechsler-Reya RJ, Scott MP. Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron. 1999;22:103–14.

    CAS  PubMed  Google Scholar 

  32. Oliver TG, et al. Loss of patched and disruption of granule cell development in a pre-neoplastic stage of medulloblastoma. Development. 2005;132:2425–39. doi:10.1242/dev.01793.

    CAS  PubMed  Google Scholar 

  33. Goodrich LV, Milenkovic L, Higgins KM, Scott MP. Altered neural cell fates and medulloblastoma in mouse patched mutants. Science. 1997;277:1109–13.

    CAS  PubMed  Google Scholar 

  34. Hallahan AR. The SmoA1 mouse model reveals that notch signaling is critical for the growth and survival of sonic hedgehog-induced medulloblastomas. Cancer Res. 2004;64:7794–800. doi:10.1158/0008-5472.CAN-04-1813.

    CAS  PubMed  Google Scholar 

  35. Raffel C, et al. Sporadic medulloblastomas contain PTCH mutations. Cancer Res. 1997;57:842–5.

    CAS  PubMed  Google Scholar 

  36. Taylor MD, et al. Mutations in SUFU predispose to medulloblastoma. Nat Genet. 2002;31:306–10. doi:10.1038/ng916.

    CAS  PubMed  Google Scholar 

  37. Thomas KR, Capecchi MR. Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature. 1990;346:847–50. doi:10.1038/346847a0.

    CAS  PubMed  Google Scholar 

  38. Pei Y et al. WNT signaling increases proliferation and impairs differentiation of stem cells in the developing cerebellum. Development. 2012. doi: 10.1242/dev.050104. pii: dev.050104.

    Google Scholar 

  39. Read T-A, et al. Identification of CD15 as a marker for tumor-propagating cells in a mouse model of medulloblastoma. Cancer Cell. 2009;15:135–47. doi:10.1016/j.ccr.2008.12.016.

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Ward RJ, et al. Multipotent CD15+ cancer stem cells in patched-1-deficient mouse medulloblastoma. Cancer Res. 2009;69:4682–90. doi:10.1158/0008-5472.CAN-09-0342.

    CAS  PubMed  Google Scholar 

  41. Li P, et al. A population of Nestin-expressing progenitors in the cerebellum exhibits increased tumorigenicity. Nat Neurosci. 2013;16:1737–44. doi:10.1038/nn.3553. pii: nn.3553.

    CAS  PubMed  Google Scholar 

  42. Schüller U, et al. Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma. Cancer Cell. 2008;14:123–34. doi:10.1016/j.ccr.2008.07.005.

    PubMed Central  PubMed  Google Scholar 

  43. Yang Z-J, et al. Medulloblastoma can be initiated by deletion of patched in lineage-restricted progenitors or stem cells. Cancer Cell. 2008;14:135–45. doi:10.1016/j.ccr.2008.07.003.

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Grammel D, et al. Sonic hedgehog-associated medulloblastoma arising from the cochlear nuclei of the brainstem. Acta Neuropathol. 2012;123:601–14. doi:10.1007/s00401-012-0961-0.

    CAS  PubMed  Google Scholar 

  45. Manoranjan B, et al. FoxG1 interacts with Bmi1 to regulate self-renewal and tumorigenicity of medulloblastoma stem cells. Stem Cells. 2013;31:1266–77. doi:10.1002/stem.1401.

    CAS  PubMed  Google Scholar 

  46. Wang X, Venugopal C, Manoranjan B, McFarlane N, O’Farrell E, Nolte S, Gunnarsson T, Hollenberg R, Kwiecien J, Northcott P, Taylor MD, Hawkins C, Singh SK. Sonic hedgehog regulates Bmi1 in human medulloblastoma brain tumor-initiating cells. Oncogene. 2012;31:187–99.

    Google Scholar 

  47. Bruggeman SWM, et al. Bmi1 controls tumor development in an Ink4a/Arf-independent manner in a mouse model for glioma. Cancer Cell. 2007;12:328–41. doi:10.1016/j.ccr.2007.08.032.

    CAS  PubMed  Google Scholar 

  48. Leung C, Lingbeek M, Shakhova O, Liu J, Tanger E, Saremaslani P, Van Lohuizen M, Marino S. Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas. Nature. 2004;428:337–41.

    Google Scholar 

  49. Glinsky GV, Berezovska O, Glinskii AB. Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. J Clin Invest. 2005;115:1503–21. doi:10.1172/JCI23412DS1.

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Zakrzewska M, et al. Polycomb genes expression as a predictor of poor clinical outcome in children with medulloblastoma. Childs Nerv Syst. 2010;27:79–86. doi:10.1007/s00381-010-1260-5.

    PubMed Central  PubMed  Google Scholar 

  51. Yang M-H, et al. Bmi1 is essential in Twist1-induced epithelial–mesenchymal transition. Nat Cell Biol. 2010;12:982–92. doi:10.1038/ncb2099.

    PubMed  Google Scholar 

  52. Dolecek TA, Propp JM, Stroup NE, Kruchko C. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro Oncol. 2012;14 Suppl 5:v1–49. doi:10.1093/neuonc/nos218. pii: nos218.

    PubMed Central  PubMed  Google Scholar 

  53. Picard D, et al. Markers of survival and metastatic potential in childhood CNS primitive neuro-ectodermal brain tumours: an integrative genomic analysis. Lancet Oncol. 2012;13:838–48. doi:10.1016/S1470-2045(12)70257-7. pii: S1470-2045(12)70257-7.

    PubMed Central  PubMed  Google Scholar 

  54. Liu Z et al. A patient tumor-derived orthotopic xenograft mouse model replicating the group 3 supratentorial primitive neuroectodermal tumor in children. Neuro Oncol. 2014. doi: 10.1093/neuonc/not244, pii: not244.

    Google Scholar 

  55. Cocce MC, Lubieniecki F, Kordes U, Alderete D, Gallego MS. A complex karyotype in an atypical teratoid/rhabdoid tumor: case report and review of the literature. J Neuro-Oncol. 2011;104:375–80. doi:10.1007/s11060-010-0478-0.

    Google Scholar 

  56. Avci Z, Kaya IS, Dogukan AS, Aydin O, Ismailoglu O. Pathology teach and tell: central nervous system atypical teratoid/rhabdoid tumor. Pediatr Pathol Mol Med. 2003;22:443–7.

    PubMed  Google Scholar 

  57. Rorke LB, Packer RJ, Biegel JA. Central nervous system atypical teratoid/rhabdoid tumors of infancy and childhood: definition of an entity. J Neurosurg. 1996;85:56–65. doi:10.3171/jns.1996.85.1.0056.

    CAS  PubMed  Google Scholar 

  58. Versteege I, et al. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature. 1998;394:203–6. doi:10.1038/28212.

    CAS  PubMed  Google Scholar 

  59. Pfister SM, et al. Molecular diagnostics of CNS embryonal tumors. Acta Neuropathol. 2010;120:553–66. doi:10.1007/s00401-010-0751-5.

    CAS  PubMed  Google Scholar 

  60. Ichimura K, Nishikawa R, Matsutani M. Molecular markers in pediatric neuro-oncology. Neuro Oncol 2012;14(Suppl 4): iv90–9, doi:10.1093/neuonc/nos204.

    Google Scholar 

  61. Wilson BG, Roberts CW. SWI/SNF nucleosome remodellers and cancer. Nat Rev Cancer. 2011;11:481–92. doi:10.1038/nrc3068.

    CAS  PubMed  Google Scholar 

  62. Nicolaides T, et al. High-dose chemotherapy and autologous stem cell rescue for atypical teratoid/rhabdoid tumor of the central nervous system. J Neuro-Oncol. 2010;98:117–23. doi:10.1007/s11060-009-0071-6.

    Google Scholar 

  63. Yachnis AT, Neubauer D, Muir D. Characterization of a primary central nervous system atypical teratoid/rhabdoid tumor and derivative cell line: immunophenotype and neoplastic properties. J Neuropathol Exp Neurol. 1998;57:961–71.

    CAS  PubMed  Google Scholar 

  64. Biegel JA. Molecular genetics of atypical teratoid/rhabdoid tumor. Neurosurg Focus. 2006;20:E11.

    PubMed  Google Scholar 

  65. Parham DM, Weeks DA, Beckwith JB. The clinicopathologic spectrum of putative extrarenal rhabdoid tumors. An analysis of 42 cases studied with immunohistochemistry or electron microscopy. Am J Surg Pathol. 1994;18:1010–29.

    CAS  PubMed  Google Scholar 

  66. Chiou SH, et al. Identification of CD133-positive radioresistant cells in atypical teratoid/rhabdoid tumor. PLoS ONE. 2008;3:e2090. doi:10.1371/journal.pone.0002090.

    PubMed Central  PubMed  Google Scholar 

  67. Kao CL, et al. Resveratrol-induced apoptosis and increased radiosensitivity in CD133-positive cells derived from atypical teratoid/rhabdoid tumor. Int J Radiat Oncol Biol Phys. 2009;74:219–28. doi:10.1016/j.ijrobp.2008.12.035.

    CAS  PubMed  Google Scholar 

  68. Ma HI, et al. Differential expression profiling between atypical teratoid/rhabdoid and medulloblastoma tumor in vitro and in vivo using microarray analysis. Childs Nerv Syst. 2010;26:293–303. doi:10.1007/s00381-009-1016-2.

    PubMed  Google Scholar 

  69. Alimova I, et al. Inhibition of EZH2 suppresses self-renewal and induces radiation sensitivity in atypical rhabdoid teratoid tumor cells. Neuro-Oncology. 2013;15:149–60. doi:10.1093/neuonc/nos285.

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Mack SC, Taylor MD. The genetic and epigenetic basis of ependymoma. Childs Nerv Syst. 2009;25:1195–201. doi:10.1007/s00381-009-0928-1.

    PubMed  Google Scholar 

  71. Kilday JP, et al. Pediatric ependymoma: biological perspectives. Mol Cancer Res. 2009;7:765–86. doi:10.1158/1541-7786.MCR-08-0584. pii: 1541-7786.MCR-08-0584.

    CAS  PubMed  Google Scholar 

  72. Witt H, et al. Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. Cancer Cell. 2011;20:143–57. doi:10.1016/j.ccr.2011.07.007. pii: S1535-6108(11)00262-5.

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Taylor MD, et al. Radial glia cells are candidate stem cells of ependymoma. Cancer Cell. 2005;8:323–35. doi:10.1016/j.ccr.2005.09.001. pii: S1535-6108(05)00270-9.

    CAS  PubMed  Google Scholar 

  74. Conover JC, et al. Disruption of Eph/ephrin signaling affects migration and proliferation in the adult subventricular zone. Nat Neurosci. 2000;3:1091–7. doi:10.1038/80606.

    CAS  PubMed  Google Scholar 

  75. Dasen JS, Liu JP, Jessell TM. Motor neuron columnar fate imposed by sequential phases of Hox-c activity. Nature. 2003;425:926–33. doi:10.1038/nature02051. pii: nature02051.

    CAS  PubMed  Google Scholar 

  76. Johnson RA, et al. Cross-species genomics matches driver mutations and cell compartments to model ependymoma. Nature. 2010;466:632–6. pii: nature 09173.

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Jones DT, et al. Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat Genet. 2013;45:927–32. doi:10.1038/ng.2682. pii: ng.2682.

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Zhang J, et al. Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat Genet. 2013;45:602–12. doi:10.1038/ng.2611. pii: ng.2611.

    PubMed Central  CAS  PubMed  Google Scholar 

  79. da Lee Y, Gianino SM, Gutmann DH. Innate neural stem cell heterogeneity determines the patterning of glioma formation in children. Cancer Cell. 2012;22:131–8. doi:10.1016/j.ccr.2012.05.036. pii: S1535-6108(12)00251-6.

    PubMed Central  Google Scholar 

  80. Paugh BS, et al. Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. J Clin Oncol. 2010;28:3061–8. doi:10.1200/JCO.2009.26.7252. pii: JCO.2009.26.7252.

    PubMed Central  PubMed  Google Scholar 

  81. Pollack IF, et al. Age and TP53 mutation frequency in childhood malignant gliomas: results in a multi-institutional cohort. Cancer Res. 2001;61:7404–7.

    CAS  PubMed  Google Scholar 

  82. Wu G, et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet. 2012;44:251–3. doi:10.1038/ng.1102. pii: ng.1102.

    PubMed Central  CAS  PubMed  Google Scholar 

  83. Schwartzentruber J, et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature. 2012;482:226–31. pii: nature 10833.

    CAS  PubMed  Google Scholar 

  84. Bjerke L et al. Histone H3.3 mutations drive pediatric glioblastoma through upregulation of MYCN. Cancer Discov. 2013. doi: 10.1158/2159-8290.CD-12-0426. pii: 2159-8290.CD-12-0426.

    Google Scholar 

  85. Thirant C, et al. Clinical relevance of tumor cells with stem-like properties in pediatric brain tumors. PLoS ONE. 2011;6:e16375. doi:10.1371/journal.pone.0016375.

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Gaspar N, et al. MGMT-independent temozolomide resistance in pediatric glioblastoma cells associated with a PI3-kinase-mediated HOX/stem cell gene signature. Cancer Res. 2010;70:9243–52. doi:10.1158/0008-5472.CAN-10-1250. pii: 0008-5472.CAN-10-1250.

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Liu Z, et al. Intravenous injection of oncolytic picornavirus SVV-001 prolongs animal survival in a panel of primary tumor-based orthotopic xenograft mouse models of pediatric glioma. Neuro Oncol. 2013;15:1173–85. doi:10.1093/neuonc/not065. pii: not065.

    PubMed Central  CAS  PubMed  Google Scholar 

  88. Hargrave D, Bartels U, Bouffet E. Diffuse brainstem glioma in children: critical review of clinical trials. Lancet Oncol. 2006;7:241–8. doi:10.1016/S1470-2045(06)70615-5. pii: S1470-2045(06)70615-5.

    PubMed  Google Scholar 

  89. Schroeder KM, Hoeman CM, Becher OJ. Children are not just little adults: recent advances in understanding of diffuse intrinsic pontine glioma biology. Pediatr Res. 2013. doi: 10.1038/pr.2013.194. pii: pr2013194.

    Google Scholar 

  90. Khuong-Quang DA, et al. K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol. 2012;124:439–47. doi:10.1007/s00401-012-0998-0.

    PubMed Central  CAS  PubMed  Google Scholar 

  91. Puget S, et al. Mesenchymal transition and PDGFRA amplification/mutation are key distinct oncogenic events in pediatric diffuse intrinsic pontine gliomas. PLoS ONE. 2012;7:e30313. doi:10.1371/journal.pone.0030313. pii: PONE-D-11-11908.

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Saratsis AM, et al. Comparative multidimensional molecular analyses of pediatric diffuse intrinsic pontine glioma reveals distinct molecular subtypes. Acta Neuropathol. 2013. doi:10.1007/s00401-013-1218-2.

    PubMed  Google Scholar 

  93. Monje M, et al. Hedgehog-responsive candidate cell of origin for diffuse intrinsic pontine glioma. Proc Natl Acad Sci U S A. 2011;108:4453–8. doi:10.1073/pnas.1101657108. pii: 1101657108.

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Becher OJ, et al. Preclinical evaluation of radiation and perifosine in a genetically and histologically accurate model of brainstem glioma. Cancer Res. 2010;70:2548–57. doi:10.1158/0008-5472.CAN-09-2503. pii: 0008-5472.CAN-09-2503.

    CAS  PubMed  Google Scholar 

  95. Ballester LY, et al. Morphologic characteristics and immunohistochemical profile of diffuse intrinsic pontine gliomas. Am J Surg Pathol. 2013;37:1357–64. doi:10.1097/PAS.0b013e318294e817. pii: 00000478-201309000-00008.

    PubMed Central  PubMed  Google Scholar 

  96. Thakkar JP, Chew L, Villano JL. Primary CNS germ cell tumors: current epidemiology and update on treatment. Med Oncol. 2013;30:496. doi:10.1007/s12032-013-0496-9.

    PubMed  Google Scholar 

  97. Khatua S, Sadighi ZS, Pearlman ML, Bochare S, Vats TS. Brain tumors in children–current therapies and newer directions. Indian J Pediatr. 2012;79:922–7. doi:10.1007/s12098-012-0689-9.

    PubMed  Google Scholar 

  98. Tan C, Scotting PJ. Stem cell research points the way to the cell of origin for intracranial germ cell tumours. J Pathol. 2013;229:4–11. doi:10.1002/path.4098.

    CAS  PubMed  Google Scholar 

  99. Herrmann HD, Westphal M, Winkler K, Laas RW, Schulte FJ. Treatment of nongerminomatous germ-cell tumors of the pineal region. Neurosurgery. 1994;34:524–9. discussion 529.

    CAS  PubMed  Google Scholar 

  100. Calaminus G, et al. Intracranial germ cell tumors: a comprehensive update of the European data. Neuropediatrics. 1994;25:26–32. doi:10.1055/s-2008-1071577.

    CAS  PubMed  Google Scholar 

  101. Bamberg M, et al. Radiation therapy for intracranial germinoma: results of the German cooperative prospective trials MAKEI 83/86/89. J Clin Oncol. 1999;17:2585–92.

    CAS  PubMed  Google Scholar 

  102. Schild SE, et al. Histologically confirmed pineal tumors and other germ cell tumors of the brain. Cancer. 1996;78:2564–71.

    CAS  PubMed  Google Scholar 

  103. Kyritsis AP. Management of primary intracranial germ cell tumors. J Neuro-Oncol. 2010;96:143–9. doi:10.1007/s11060-009-9951-z.

    Google Scholar 

  104. Sakuma Y, et al. c-kit gene mutations in intracranial germinomas. Cancer Sci. 2004;95:716–20.

    CAS  PubMed  Google Scholar 

  105. Hoei-Hansen CE, et al. New evidence for the origin of intracranial germ cell tumours from primordial germ cells: expression of pluripotency and cell differentiation markers. J Pathol. 2006;209:25–33. doi:10.1002/path.1948.

    CAS  PubMed  Google Scholar 

  106. Scotting PJ. Are cranial germ cell tumours really tumours of germ cells? Neuropathol Appl Neurobiol. 2006;32:569–74. doi:10.1111/j.1365-2990.2006.00797.x.

    CAS  PubMed  Google Scholar 

  107. Wiese C, et al. Nestin expression–a property of multi-lineage progenitor cells? Cell Mol Life Sci. 2004;61:2510–22. doi:10.1007/s00018-004-4144-6.

    CAS  PubMed  Google Scholar 

  108. Sakurada K, et al. Nestin expression in central nervous system germ cell tumors. Neurosurg Rev. 2008;31:173–6. doi:10.1007/s10143-007-0115-3. discussion 176–177.

    CAS  PubMed  Google Scholar 

  109. Muller HL. Childhood craniopharyngioma. Pituitary. 2013;16:56–67. doi:10.1007/s11102-012-0401-0.

    PubMed  Google Scholar 

  110. Wisoff JH. Craniopharyngioma. J Neurosurg Pediatr. 2008;1:124–5. doi:10.3171/PED/2008/1/2/124. discussion 125.

    PubMed  Google Scholar 

  111. Elliott RE, Wisoff JH. Surgical management of giant pediatric craniopharyngiomas. J Neurosurg Pediatr. 2010;6:403–16. doi:10.3171/2010.8.PEDS09385.

    PubMed  Google Scholar 

  112. Karavitaki N, Cudlip S, Adams CB, Wass JA. Craniopharyngiomas. Endocr Rev. 2006;27:371–97. doi:10.1210/er.2006-0002. pii: er.2006-0002.

    PubMed  Google Scholar 

  113. Garre ML, Cama A. Craniopharyngioma: modern concepts in pathogenesis and treatment. Curr Opin Pediatr. 2007;19:471–9. doi:10.1097/MOP.0b013e3282495a22. pii: 00008480-200708000-00016.

    PubMed  Google Scholar 

  114. Holsken A, Buchfelder M, Fahlbusch R, Blumcke I, Buslei R. Tumour cell migration in adamantinomatous craniopharyngiomas is promoted by activated Wnt-signalling. Acta Neuropathol. 2010;119:631–9. doi:10.1007/s00401-010-0642-9.

    PubMed  Google Scholar 

  115. Nielsen EH, et al. Incidence of craniopharyngioma in Denmark (n = 189) and estimated world incidence of craniopharyngioma in children and adults. J Neurooncol. 2011;104:755–63. doi:10.1007/s11060-011-0540-6.

    CAS  PubMed  Google Scholar 

  116. Bunin GR, et al. The descriptive epidemiology of craniopharyngioma. J Neurosurg. 1998;89:547–51. doi:10.3171/jns.1998.89.4.0547.

    CAS  PubMed  Google Scholar 

  117. Gaston-Massuet C, et al. Increased wingless (Wnt) signaling in pituitary progenitor/stem cells gives rise to pituitary tumors in mice and humans. Proc Natl Acad Sci U S A. 2011;108:11482–7. doi:10.1073/pnas.1101553108. pii: 1101553108.

    PubMed Central  CAS  PubMed  Google Scholar 

  118. Andoniadou CL, et al. Identification of novel pathways involved in the pathogenesis of human adamantinomatous craniopharyngioma. Acta Neuropathol. 2012;124:259–71. doi:10.1007/s00401-012-0957-9.

    PubMed Central  CAS  PubMed  Google Scholar 

  119. Zhu X, Gleiberman AS, Rosenfeld MG. Molecular physiology of pituitary development: signaling and transcriptional networks. Physiol Rev. 2007;87:933–63. doi:10.1152/physrev.00006.2006. pii: 87/3/933.

    CAS  PubMed  Google Scholar 

  120. Beier D, et al. CD133(+) and CD133(-) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res. 2007;67:4010–5. doi:10.1158/0008-5472.CAN-06-4180. pii: 67/9/4010.

    CAS  PubMed  Google Scholar 

  121. Clement V, Dutoit V, Marino D, Dietrich PY, Radovanovic I. Limits of CD133 as a marker of glioma self-renewing cells. Int J Cancer. 2009;125:244–8. doi:10.1002/ijc.24352.

    CAS  PubMed  Google Scholar 

  122. Sun Y, et al. CD133 (Prominin) negative human neural stem cells are clonogenic and tripotent. PLoS ONE. 2009;4:e5498. doi:10.1371/journal.pone.0005498.

    PubMed Central  PubMed  Google Scholar 

  123. Abdouh M, et al. BMI1 sustains human glioblastoma multiforme stem cell renewal. J Neurosci. 2009;29:8884–96. doi:10.1523/JNEUROSCI.0968-09.2009. pii: 29/28/8884.

    CAS  PubMed  Google Scholar 

  124. Chen R, et al. A hierarchy of self-renewing tumor-initiating cell types in glioblastoma. Cancer Cell. 2010;17:362–75. doi:10.1016/j.ccr.2009.12.049. pii: S1535-6108(10)00065-6.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheila K. Singh M.D., Ph.D., F.R.C.S(C). .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Manoranjan, B., Garg, N., Bakhshinyan, D., Singh, S.K. (2015). The Role of Stem Cells in Pediatric Central Nervous System Malignancies. In: Ehtesham, M. (eds) Stem Cell Biology in Neoplasms of the Central Nervous System. Advances in Experimental Medicine and Biology, vol 853. Springer, Cham. https://doi.org/10.1007/978-3-319-16537-0_4

Download citation

Publish with us

Policies and ethics