Advertisement

The Role of Stem Cells in Pediatric Central Nervous System Malignancies

  • Branavan Manoranjan
  • Neha Garg
  • David Bakhshinyan
  • Sheila K. SinghEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 853)

Abstract

Representing the leading cause of childhood cancer mortality, pediatric brain tumors are comprised of diverse histological features, genetic perturbations, cellular populations, treatment protocols, and clinical outcomes. In this chapter we discuss recent and emerging data that implicate cancer stem cells (also known as brain tumor-initiating cells) in initiating and maintaining the growth of a number of pediatric brain tumors including: medulloblastoma, supratentorial primitive neuroectodermal tumor, atypical teratoid/rhabdoid tumor, ependymoma, low-grade glioma, glioblastoma, diffuse intrinsic pontine glioma, germ cell tumor, and craniopharyngioma. The development of a stem cell framework for the study and treatment of these tumors will enable future clinical approaches to harness the heterogeneous cellular and genomic landscape of these solid tumors as an avenue for developing targeted patient-oriented therapies, thereby improving the overall survivorship for the most lethal childhood cancer.

Keywords

Pediatric brain tumor Cancer stem cell Brain tumor-initiating cell Medulloblastoma Ependymoma Supratentorial primitive neuroectodermal tumor Low-grade glioma Pediatric glioblastoma Diffuse intrinsic pontine glioma Atypical teratoid/rhabdoid tumor Germ cell tumor Craniopharyngioma 

References

  1. 1.
    Louis DN, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114:97–109. doi: 10.1007/s00401-007-0243-4.PubMedCentralPubMedGoogle Scholar
  2. 2.
    Clarke MF, et al. Cancer stem cells–perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res. 2006;66:9339–44. doi: 10.1158/0008-5472.CAN-06-3126.PubMedGoogle Scholar
  3. 3.
    Magee JA, Piskounova E, Morrison SJ. Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell. 2012;21:283–96. doi: 10.1016/j.ccr.2012.03.003. [pii] S1535-6108(12)00086-4.PubMedGoogle Scholar
  4. 4.
    Reynolds BA, Weiss S. Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol. 1996;175:1–13.PubMedGoogle Scholar
  5. 5.
    Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 1992;255:1707–10.PubMedGoogle Scholar
  6. 6.
    Uchida N, et al. Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci U S A. 2000;97:14720–5. doi: 10.1073/pnas.97.26.14720.PubMedCentralPubMedGoogle Scholar
  7. 7.
    Singh SK, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63:5821–8.PubMedGoogle Scholar
  8. 8.
    Singh SK, et al. Identification of human brain tumour initiating cells. Nature. 2004;432:396–401. doi: 10.1038/nature03128. pii: nature03128.PubMedGoogle Scholar
  9. 9.
    Hemmati HD, et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A. 2003;100:15178–83. doi: 10.1073/pnas.2036535100.PubMedCentralPubMedGoogle Scholar
  10. 10.
    Panosyan EH, et al. Clinical outcome in pediatric glial and embryonal brain tumors correlates with in vitro multi-passageable neurosphere formation. Pediatr Blood Cancer. 2010;55:644–51. doi: 10.1002/pbc.22627.PubMedCentralPubMedGoogle Scholar
  11. 11.
    CBTRUS. Primary brain and central nervous system tumors diagnosed in the United States in 2004–2008. 2012.Google Scholar
  12. 12.
    Cho YJ, et al. Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome. J Clin Oncol. 2011;29:1424–30. doi: 10.1200/JCO.2010.28.5148.PubMedCentralPubMedGoogle Scholar
  13. 13.
    Kool M, et al. Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS ONE. 2008; 3:e3088. doi: 10.1371/journal.pone.0003088.t001.PubMedCentralPubMedGoogle Scholar
  14. 14.
    Northcott PA, et al. Medulloblastoma comprises four distinct molecular variants. J Clin Oncol. 2011;29:1408–14. doi: 10.1200/JCO.2009.27.4324.PubMedGoogle Scholar
  15. 15.
    Pomeroy SL, et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature. 2002;415:436–42. doi: 10.1038/415436a.PubMedGoogle Scholar
  16. 16.
    Thompson MC, et al. Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. J Clin Oncol. 2006;24:1924–31. doi: 10.1200/JCO.2005.04.4974.PubMedGoogle Scholar
  17. 17.
    Kool M, et al. Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol. 2012;123:473–84. doi: 10.1007/s00401-012-0958-8.PubMedCentralPubMedGoogle Scholar
  18. 18.
    Taylor MD, et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol. 2012;123:465–72. doi: 10.1007/s00401-011-0922-z.PubMedCentralPubMedGoogle Scholar
  19. 19.
    Pei Y, et al. An animal model of MYC-driven medulloblastoma. Cancer Cell. 2012;21:155–67. doi: 10.1016/j.ccr.2011.12.021. pii: S1535-6108(11)00483-1.PubMedCentralPubMedGoogle Scholar
  20. 20.
    Gibson P et al. Subtypes of medulloblastoma have distinct developmental origins. Nature. 2010;1–5. doi:10.1038/nature09587.Google Scholar
  21. 21.
    Kawauchi D, et al. A mouse model of the most aggressive subgroup of human medulloblastoma. Cancer Cell. 2012;21:168–80. doi: 10.1016/j.ccr.2011.12.023. pii: S1535-6108(12)00002-5.PubMedCentralPubMedGoogle Scholar
  22. 22.
    Clifford SC, et al. Wnt/Wingless pathway activation and chromosome 6 loss characterize a distinct molecular sub-group of medulloblastomas associated with a favorable prognosis. Cell Cycle. 2006;5:2666–70.PubMedGoogle Scholar
  23. 23.
    Ellison DW, et al. beta-Catenin status predicts a favorable outcome in childhood medulloblastoma: the United Kingdom Children’s Cancer Study Group Brain Tumour Committee. J Clin Oncol. 2005;23:7951–7. doi: 10.1200/JCO.2005.01.5479.PubMedGoogle Scholar
  24. 24.
    Fattet S, et al. Beta-catenin status in paediatric medulloblastomas: correlation of immunohistochemical expression with mutational status, genetic profiles, and clinical characteristics. J Pathol. 2009;218:86–94. doi: 10.1002/path.2514.PubMedGoogle Scholar
  25. 25.
    Ellison DW. Childhood medulloblastoma: novel approaches to the classification of a heterogeneous disease. Acta Neuropathol. 2010;120:305–16. doi: 10.1007/s00401-010-0726-6.PubMedGoogle Scholar
  26. 26.
    Wright J. Neurocytoma or neuroblastoma, a kind of tumor not generally recognized. J Exp Med. 1910;12(4):556–61.PubMedCentralPubMedGoogle Scholar
  27. 27.
    Bailey P, Cushing H. Medulloblastoma cerebelli: a common type of midcerebellar glioma of childhood. Arch Neurol Psychiatry. 1925;14:192–224. doi: 10.1001/archneurpsyc.1925.02200140055002.Google Scholar
  28. 28.
    Fuccillo M, Joyner AL, Fishell G. Morphogen to mitogen: the multiple roles of hedgehog signalling in vertebrate neural development. Nat Rev Neurosci. 2006;7:772–83. doi: 10.1038/nrn1990. pii: nrn1990.PubMedGoogle Scholar
  29. 29.
    Wang VY, Zoghbi HY. Genetic regulation of cerebellar development. Nat Rev Neurosci. 2001;2:489–91.Google Scholar
  30. 30.
    Sotelo C. Cellular and genetic regulation of the development of the cerebellar system. Prog Neurobiol. 2004;72:295–339. doi: 10.1016/j.pneurobio.2004.03.004. pii: S0301008204000401.PubMedGoogle Scholar
  31. 31.
    Wechsler-Reya RJ, Scott MP. Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron. 1999;22:103–14.PubMedGoogle Scholar
  32. 32.
    Oliver TG, et al. Loss of patched and disruption of granule cell development in a pre-neoplastic stage of medulloblastoma. Development. 2005;132:2425–39. doi: 10.1242/dev.01793.PubMedGoogle Scholar
  33. 33.
    Goodrich LV, Milenkovic L, Higgins KM, Scott MP. Altered neural cell fates and medulloblastoma in mouse patched mutants. Science. 1997;277:1109–13.PubMedGoogle Scholar
  34. 34.
    Hallahan AR. The SmoA1 mouse model reveals that notch signaling is critical for the growth and survival of sonic hedgehog-induced medulloblastomas. Cancer Res. 2004;64:7794–800. doi: 10.1158/0008-5472.CAN-04-1813.PubMedGoogle Scholar
  35. 35.
    Raffel C, et al. Sporadic medulloblastomas contain PTCH mutations. Cancer Res. 1997;57:842–5.PubMedGoogle Scholar
  36. 36.
    Taylor MD, et al. Mutations in SUFU predispose to medulloblastoma. Nat Genet. 2002;31:306–10. doi: 10.1038/ng916.PubMedGoogle Scholar
  37. 37.
    Thomas KR, Capecchi MR. Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature. 1990;346:847–50. doi: 10.1038/346847a0.PubMedGoogle Scholar
  38. 38.
    Pei Y et al. WNT signaling increases proliferation and impairs differentiation of stem cells in the developing cerebellum. Development. 2012. doi: 10.1242/dev.050104. pii: dev.050104.Google Scholar
  39. 39.
    Read T-A, et al. Identification of CD15 as a marker for tumor-propagating cells in a mouse model of medulloblastoma. Cancer Cell. 2009;15:135–47. doi: 10.1016/j.ccr.2008.12.016.PubMedCentralPubMedGoogle Scholar
  40. 40.
    Ward RJ, et al. Multipotent CD15+ cancer stem cells in patched-1-deficient mouse medulloblastoma. Cancer Res. 2009;69:4682–90. doi: 10.1158/0008-5472.CAN-09-0342.PubMedGoogle Scholar
  41. 41.
    Li P, et al. A population of Nestin-expressing progenitors in the cerebellum exhibits increased tumorigenicity. Nat Neurosci. 2013;16:1737–44. doi: 10.1038/nn.3553. pii: nn.3553.PubMedGoogle Scholar
  42. 42.
    Schüller U, et al. Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma. Cancer Cell. 2008;14:123–34. doi: 10.1016/j.ccr.2008.07.005.PubMedCentralPubMedGoogle Scholar
  43. 43.
    Yang Z-J, et al. Medulloblastoma can be initiated by deletion of patched in lineage-restricted progenitors or stem cells. Cancer Cell. 2008;14:135–45. doi: 10.1016/j.ccr.2008.07.003.PubMedCentralPubMedGoogle Scholar
  44. 44.
    Grammel D, et al. Sonic hedgehog-associated medulloblastoma arising from the cochlear nuclei of the brainstem. Acta Neuropathol. 2012;123:601–14. doi: 10.1007/s00401-012-0961-0.PubMedGoogle Scholar
  45. 45.
    Manoranjan B, et al. FoxG1 interacts with Bmi1 to regulate self-renewal and tumorigenicity of medulloblastoma stem cells. Stem Cells. 2013;31:1266–77. doi: 10.1002/stem.1401.PubMedGoogle Scholar
  46. 46.
    Wang X, Venugopal C, Manoranjan B, McFarlane N, O’Farrell E, Nolte S, Gunnarsson T, Hollenberg R, Kwiecien J, Northcott P, Taylor MD, Hawkins C, Singh SK. Sonic hedgehog regulates Bmi1 in human medulloblastoma brain tumor-initiating cells. Oncogene. 2012;31:187–99.Google Scholar
  47. 47.
    Bruggeman SWM, et al. Bmi1 controls tumor development in an Ink4a/Arf-independent manner in a mouse model for glioma. Cancer Cell. 2007;12:328–41. doi: 10.1016/j.ccr.2007.08.032.PubMedGoogle Scholar
  48. 48.
    Leung C, Lingbeek M, Shakhova O, Liu J, Tanger E, Saremaslani P, Van Lohuizen M, Marino S. Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas. Nature. 2004;428:337–41.Google Scholar
  49. 49.
    Glinsky GV, Berezovska O, Glinskii AB. Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. J Clin Invest. 2005;115:1503–21. doi: 10.1172/JCI23412DS1.PubMedCentralPubMedGoogle Scholar
  50. 50.
    Zakrzewska M, et al. Polycomb genes expression as a predictor of poor clinical outcome in children with medulloblastoma. Childs Nerv Syst. 2010;27:79–86. doi: 10.1007/s00381-010-1260-5.PubMedCentralPubMedGoogle Scholar
  51. 51.
    Yang M-H, et al. Bmi1 is essential in Twist1-induced epithelial–mesenchymal transition. Nat Cell Biol. 2010;12:982–92. doi: 10.1038/ncb2099.PubMedGoogle Scholar
  52. 52.
    Dolecek TA, Propp JM, Stroup NE, Kruchko C. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro Oncol. 2012;14 Suppl 5:v1–49. doi: 10.1093/neuonc/nos218. pii: nos218.PubMedCentralPubMedGoogle Scholar
  53. 53.
    Picard D, et al. Markers of survival and metastatic potential in childhood CNS primitive neuro-ectodermal brain tumours: an integrative genomic analysis. Lancet Oncol. 2012;13:838–48. doi: 10.1016/S1470-2045(12)70257-7. pii: S1470-2045(12)70257-7.PubMedCentralPubMedGoogle Scholar
  54. 54.
    Liu Z et al. A patient tumor-derived orthotopic xenograft mouse model replicating the group 3 supratentorial primitive neuroectodermal tumor in children. Neuro Oncol. 2014. doi: 10.1093/neuonc/not244, pii: not244.Google Scholar
  55. 55.
    Cocce MC, Lubieniecki F, Kordes U, Alderete D, Gallego MS. A complex karyotype in an atypical teratoid/rhabdoid tumor: case report and review of the literature. J Neuro-Oncol. 2011;104:375–80. doi: 10.1007/s11060-010-0478-0.Google Scholar
  56. 56.
    Avci Z, Kaya IS, Dogukan AS, Aydin O, Ismailoglu O. Pathology teach and tell: central nervous system atypical teratoid/rhabdoid tumor. Pediatr Pathol Mol Med. 2003;22:443–7.PubMedGoogle Scholar
  57. 57.
    Rorke LB, Packer RJ, Biegel JA. Central nervous system atypical teratoid/rhabdoid tumors of infancy and childhood: definition of an entity. J Neurosurg. 1996;85:56–65. doi: 10.3171/jns.1996.85.1.0056.PubMedGoogle Scholar
  58. 58.
    Versteege I, et al. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature. 1998;394:203–6. doi: 10.1038/28212.PubMedGoogle Scholar
  59. 59.
    Pfister SM, et al. Molecular diagnostics of CNS embryonal tumors. Acta Neuropathol. 2010;120:553–66. doi: 10.1007/s00401-010-0751-5.PubMedGoogle Scholar
  60. 60.
    Ichimura K, Nishikawa R, Matsutani M. Molecular markers in pediatric neuro-oncology. Neuro Oncol 2012;14(Suppl 4): iv90–9, doi:10.1093/neuonc/nos204.Google Scholar
  61. 61.
    Wilson BG, Roberts CW. SWI/SNF nucleosome remodellers and cancer. Nat Rev Cancer. 2011;11:481–92. doi: 10.1038/nrc3068.PubMedGoogle Scholar
  62. 62.
    Nicolaides T, et al. High-dose chemotherapy and autologous stem cell rescue for atypical teratoid/rhabdoid tumor of the central nervous system. J Neuro-Oncol. 2010;98:117–23. doi: 10.1007/s11060-009-0071-6.Google Scholar
  63. 63.
    Yachnis AT, Neubauer D, Muir D. Characterization of a primary central nervous system atypical teratoid/rhabdoid tumor and derivative cell line: immunophenotype and neoplastic properties. J Neuropathol Exp Neurol. 1998;57:961–71.PubMedGoogle Scholar
  64. 64.
    Biegel JA. Molecular genetics of atypical teratoid/rhabdoid tumor. Neurosurg Focus. 2006;20:E11.PubMedGoogle Scholar
  65. 65.
    Parham DM, Weeks DA, Beckwith JB. The clinicopathologic spectrum of putative extrarenal rhabdoid tumors. An analysis of 42 cases studied with immunohistochemistry or electron microscopy. Am J Surg Pathol. 1994;18:1010–29.PubMedGoogle Scholar
  66. 66.
    Chiou SH, et al. Identification of CD133-positive radioresistant cells in atypical teratoid/rhabdoid tumor. PLoS ONE. 2008;3:e2090. doi: 10.1371/journal.pone.0002090.PubMedCentralPubMedGoogle Scholar
  67. 67.
    Kao CL, et al. Resveratrol-induced apoptosis and increased radiosensitivity in CD133-positive cells derived from atypical teratoid/rhabdoid tumor. Int J Radiat Oncol Biol Phys. 2009;74:219–28. doi: 10.1016/j.ijrobp.2008.12.035.PubMedGoogle Scholar
  68. 68.
    Ma HI, et al. Differential expression profiling between atypical teratoid/rhabdoid and medulloblastoma tumor in vitro and in vivo using microarray analysis. Childs Nerv Syst. 2010;26:293–303. doi: 10.1007/s00381-009-1016-2.PubMedGoogle Scholar
  69. 69.
    Alimova I, et al. Inhibition of EZH2 suppresses self-renewal and induces radiation sensitivity in atypical rhabdoid teratoid tumor cells. Neuro-Oncology. 2013;15:149–60. doi: 10.1093/neuonc/nos285.PubMedCentralPubMedGoogle Scholar
  70. 70.
    Mack SC, Taylor MD. The genetic and epigenetic basis of ependymoma. Childs Nerv Syst. 2009;25:1195–201. doi: 10.1007/s00381-009-0928-1.PubMedGoogle Scholar
  71. 71.
    Kilday JP, et al. Pediatric ependymoma: biological perspectives. Mol Cancer Res. 2009;7:765–86. doi: 10.1158/1541-7786.MCR-08-0584. pii: 1541-7786.MCR-08-0584.PubMedGoogle Scholar
  72. 72.
    Witt H, et al. Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. Cancer Cell. 2011;20:143–57. doi: 10.1016/j.ccr.2011.07.007. pii: S1535-6108(11)00262-5.PubMedCentralPubMedGoogle Scholar
  73. 73.
    Taylor MD, et al. Radial glia cells are candidate stem cells of ependymoma. Cancer Cell. 2005;8:323–35. doi: 10.1016/j.ccr.2005.09.001. pii: S1535-6108(05)00270-9.PubMedGoogle Scholar
  74. 74.
    Conover JC, et al. Disruption of Eph/ephrin signaling affects migration and proliferation in the adult subventricular zone. Nat Neurosci. 2000;3:1091–7. doi: 10.1038/80606.PubMedGoogle Scholar
  75. 75.
    Dasen JS, Liu JP, Jessell TM. Motor neuron columnar fate imposed by sequential phases of Hox-c activity. Nature. 2003;425:926–33. doi: 10.1038/nature02051. pii: nature02051.PubMedGoogle Scholar
  76. 76.
    Johnson RA, et al. Cross-species genomics matches driver mutations and cell compartments to model ependymoma. Nature. 2010;466:632–6. pii: nature 09173.PubMedCentralPubMedGoogle Scholar
  77. 77.
    Jones DT, et al. Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat Genet. 2013;45:927–32. doi: 10.1038/ng.2682. pii: ng.2682.PubMedCentralPubMedGoogle Scholar
  78. 78.
    Zhang J, et al. Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat Genet. 2013;45:602–12. doi: 10.1038/ng.2611. pii: ng.2611.PubMedCentralPubMedGoogle Scholar
  79. 79.
    da Lee Y, Gianino SM, Gutmann DH. Innate neural stem cell heterogeneity determines the patterning of glioma formation in children. Cancer Cell. 2012;22:131–8. doi: 10.1016/j.ccr.2012.05.036. pii: S1535-6108(12)00251-6.PubMedCentralGoogle Scholar
  80. 80.
    Paugh BS, et al. Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. J Clin Oncol. 2010;28:3061–8. doi: 10.1200/JCO.2009.26.7252. pii: JCO.2009.26.7252.PubMedCentralPubMedGoogle Scholar
  81. 81.
    Pollack IF, et al. Age and TP53 mutation frequency in childhood malignant gliomas: results in a multi-institutional cohort. Cancer Res. 2001;61:7404–7.PubMedGoogle Scholar
  82. 82.
    Wu G, et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet. 2012;44:251–3. doi: 10.1038/ng.1102. pii: ng.1102.PubMedCentralPubMedGoogle Scholar
  83. 83.
    Schwartzentruber J, et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature. 2012;482:226–31. pii: nature 10833.PubMedGoogle Scholar
  84. 84.
    Bjerke L et al. Histone H3.3 mutations drive pediatric glioblastoma through upregulation of MYCN. Cancer Discov. 2013. doi: 10.1158/2159-8290.CD-12-0426. pii: 2159-8290.CD-12-0426.Google Scholar
  85. 85.
    Thirant C, et al. Clinical relevance of tumor cells with stem-like properties in pediatric brain tumors. PLoS ONE. 2011;6:e16375. doi: 10.1371/journal.pone.0016375.PubMedCentralPubMedGoogle Scholar
  86. 86.
    Gaspar N, et al. MGMT-independent temozolomide resistance in pediatric glioblastoma cells associated with a PI3-kinase-mediated HOX/stem cell gene signature. Cancer Res. 2010;70:9243–52. doi: 10.1158/0008-5472.CAN-10-1250. pii: 0008-5472.CAN-10-1250.PubMedCentralPubMedGoogle Scholar
  87. 87.
    Liu Z, et al. Intravenous injection of oncolytic picornavirus SVV-001 prolongs animal survival in a panel of primary tumor-based orthotopic xenograft mouse models of pediatric glioma. Neuro Oncol. 2013;15:1173–85. doi: 10.1093/neuonc/not065. pii: not065.PubMedCentralPubMedGoogle Scholar
  88. 88.
    Hargrave D, Bartels U, Bouffet E. Diffuse brainstem glioma in children: critical review of clinical trials. Lancet Oncol. 2006;7:241–8. doi: 10.1016/S1470-2045(06)70615-5. pii: S1470-2045(06)70615-5.PubMedGoogle Scholar
  89. 89.
    Schroeder KM, Hoeman CM, Becher OJ. Children are not just little adults: recent advances in understanding of diffuse intrinsic pontine glioma biology. Pediatr Res. 2013. doi: 10.1038/pr.2013.194. pii: pr2013194.Google Scholar
  90. 90.
    Khuong-Quang DA, et al. K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol. 2012;124:439–47. doi: 10.1007/s00401-012-0998-0.PubMedCentralPubMedGoogle Scholar
  91. 91.
    Puget S, et al. Mesenchymal transition and PDGFRA amplification/mutation are key distinct oncogenic events in pediatric diffuse intrinsic pontine gliomas. PLoS ONE. 2012;7:e30313. doi: 10.1371/journal.pone.0030313. pii: PONE-D-11-11908.PubMedCentralPubMedGoogle Scholar
  92. 92.
    Saratsis AM, et al. Comparative multidimensional molecular analyses of pediatric diffuse intrinsic pontine glioma reveals distinct molecular subtypes. Acta Neuropathol. 2013. doi: 10.1007/s00401-013-1218-2.PubMedGoogle Scholar
  93. 93.
    Monje M, et al. Hedgehog-responsive candidate cell of origin for diffuse intrinsic pontine glioma. Proc Natl Acad Sci U S A. 2011;108:4453–8. doi: 10.1073/pnas.1101657108. pii: 1101657108.PubMedCentralPubMedGoogle Scholar
  94. 94.
    Becher OJ, et al. Preclinical evaluation of radiation and perifosine in a genetically and histologically accurate model of brainstem glioma. Cancer Res. 2010;70:2548–57. doi: 10.1158/0008-5472.CAN-09-2503. pii: 0008-5472.CAN-09-2503.PubMedGoogle Scholar
  95. 95.
    Ballester LY, et al. Morphologic characteristics and immunohistochemical profile of diffuse intrinsic pontine gliomas. Am J Surg Pathol. 2013;37:1357–64. doi: 10.1097/PAS.0b013e318294e817. pii: 00000478-201309000-00008.PubMedCentralPubMedGoogle Scholar
  96. 96.
    Thakkar JP, Chew L, Villano JL. Primary CNS germ cell tumors: current epidemiology and update on treatment. Med Oncol. 2013;30:496. doi: 10.1007/s12032-013-0496-9.PubMedGoogle Scholar
  97. 97.
    Khatua S, Sadighi ZS, Pearlman ML, Bochare S, Vats TS. Brain tumors in children–current therapies and newer directions. Indian J Pediatr. 2012;79:922–7. doi: 10.1007/s12098-012-0689-9.PubMedGoogle Scholar
  98. 98.
    Tan C, Scotting PJ. Stem cell research points the way to the cell of origin for intracranial germ cell tumours. J Pathol. 2013;229:4–11. doi: 10.1002/path.4098.PubMedGoogle Scholar
  99. 99.
    Herrmann HD, Westphal M, Winkler K, Laas RW, Schulte FJ. Treatment of nongerminomatous germ-cell tumors of the pineal region. Neurosurgery. 1994;34:524–9. discussion 529.PubMedGoogle Scholar
  100. 100.
    Calaminus G, et al. Intracranial germ cell tumors: a comprehensive update of the European data. Neuropediatrics. 1994;25:26–32. doi: 10.1055/s-2008-1071577.PubMedGoogle Scholar
  101. 101.
    Bamberg M, et al. Radiation therapy for intracranial germinoma: results of the German cooperative prospective trials MAKEI 83/86/89. J Clin Oncol. 1999;17:2585–92.PubMedGoogle Scholar
  102. 102.
    Schild SE, et al. Histologically confirmed pineal tumors and other germ cell tumors of the brain. Cancer. 1996;78:2564–71.PubMedGoogle Scholar
  103. 103.
    Kyritsis AP. Management of primary intracranial germ cell tumors. J Neuro-Oncol. 2010;96:143–9. doi: 10.1007/s11060-009-9951-z.Google Scholar
  104. 104.
    Sakuma Y, et al. c-kit gene mutations in intracranial germinomas. Cancer Sci. 2004;95:716–20.PubMedGoogle Scholar
  105. 105.
    Hoei-Hansen CE, et al. New evidence for the origin of intracranial germ cell tumours from primordial germ cells: expression of pluripotency and cell differentiation markers. J Pathol. 2006;209:25–33. doi: 10.1002/path.1948.PubMedGoogle Scholar
  106. 106.
    Scotting PJ. Are cranial germ cell tumours really tumours of germ cells? Neuropathol Appl Neurobiol. 2006;32:569–74. doi: 10.1111/j.1365-2990.2006.00797.x.PubMedGoogle Scholar
  107. 107.
    Wiese C, et al. Nestin expression–a property of multi-lineage progenitor cells? Cell Mol Life Sci. 2004;61:2510–22. doi: 10.1007/s00018-004-4144-6.PubMedGoogle Scholar
  108. 108.
    Sakurada K, et al. Nestin expression in central nervous system germ cell tumors. Neurosurg Rev. 2008;31:173–6. doi: 10.1007/s10143-007-0115-3. discussion 176–177.PubMedGoogle Scholar
  109. 109.
    Muller HL. Childhood craniopharyngioma. Pituitary. 2013;16:56–67. doi: 10.1007/s11102-012-0401-0.PubMedGoogle Scholar
  110. 110.
    Wisoff JH. Craniopharyngioma. J Neurosurg Pediatr. 2008;1:124–5. doi: 10.3171/PED/2008/1/2/124. discussion 125.PubMedGoogle Scholar
  111. 111.
    Elliott RE, Wisoff JH. Surgical management of giant pediatric craniopharyngiomas. J Neurosurg Pediatr. 2010;6:403–16. doi: 10.3171/2010.8.PEDS09385.PubMedGoogle Scholar
  112. 112.
    Karavitaki N, Cudlip S, Adams CB, Wass JA. Craniopharyngiomas. Endocr Rev. 2006;27:371–97. doi: 10.1210/er.2006-0002. pii: er.2006-0002.PubMedGoogle Scholar
  113. 113.
    Garre ML, Cama A. Craniopharyngioma: modern concepts in pathogenesis and treatment. Curr Opin Pediatr. 2007;19:471–9. doi: 10.1097/MOP.0b013e3282495a22. pii: 00008480-200708000-00016.PubMedGoogle Scholar
  114. 114.
    Holsken A, Buchfelder M, Fahlbusch R, Blumcke I, Buslei R. Tumour cell migration in adamantinomatous craniopharyngiomas is promoted by activated Wnt-signalling. Acta Neuropathol. 2010;119:631–9. doi: 10.1007/s00401-010-0642-9.PubMedGoogle Scholar
  115. 115.
    Nielsen EH, et al. Incidence of craniopharyngioma in Denmark (n = 189) and estimated world incidence of craniopharyngioma in children and adults. J Neurooncol. 2011;104:755–63. doi: 10.1007/s11060-011-0540-6.PubMedGoogle Scholar
  116. 116.
    Bunin GR, et al. The descriptive epidemiology of craniopharyngioma. J Neurosurg. 1998;89:547–51. doi: 10.3171/jns.1998.89.4.0547.PubMedGoogle Scholar
  117. 117.
    Gaston-Massuet C, et al. Increased wingless (Wnt) signaling in pituitary progenitor/stem cells gives rise to pituitary tumors in mice and humans. Proc Natl Acad Sci U S A. 2011;108:11482–7. doi: 10.1073/pnas.1101553108. pii: 1101553108.PubMedCentralPubMedGoogle Scholar
  118. 118.
    Andoniadou CL, et al. Identification of novel pathways involved in the pathogenesis of human adamantinomatous craniopharyngioma. Acta Neuropathol. 2012;124:259–71. doi: 10.1007/s00401-012-0957-9.PubMedCentralPubMedGoogle Scholar
  119. 119.
    Zhu X, Gleiberman AS, Rosenfeld MG. Molecular physiology of pituitary development: signaling and transcriptional networks. Physiol Rev. 2007;87:933–63. doi: 10.1152/physrev.00006.2006. pii: 87/3/933.PubMedGoogle Scholar
  120. 120.
    Beier D, et al. CD133(+) and CD133(-) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res. 2007;67:4010–5. doi: 10.1158/0008-5472.CAN-06-4180. pii: 67/9/4010.PubMedGoogle Scholar
  121. 121.
    Clement V, Dutoit V, Marino D, Dietrich PY, Radovanovic I. Limits of CD133 as a marker of glioma self-renewing cells. Int J Cancer. 2009;125:244–8. doi: 10.1002/ijc.24352.PubMedGoogle Scholar
  122. 122.
    Sun Y, et al. CD133 (Prominin) negative human neural stem cells are clonogenic and tripotent. PLoS ONE. 2009;4:e5498. doi: 10.1371/journal.pone.0005498.PubMedCentralPubMedGoogle Scholar
  123. 123.
    Abdouh M, et al. BMI1 sustains human glioblastoma multiforme stem cell renewal. J Neurosci. 2009;29:8884–96. doi: 10.1523/JNEUROSCI.0968-09.2009. pii: 29/28/8884.PubMedGoogle Scholar
  124. 124.
    Chen R, et al. A hierarchy of self-renewing tumor-initiating cell types in glioblastoma. Cancer Cell. 2010;17:362–75. doi: 10.1016/j.ccr.2009.12.049. pii: S1535-6108(10)00065-6.PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Branavan Manoranjan
    • 1
    • 2
    • 3
  • Neha Garg
    • 1
  • David Bakhshinyan
    • 1
    • 3
  • Sheila K. Singh
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.McMaster Stem Cell and Cancer Research InstituteMcMaster UniversityHamiltonCanada
  2. 2.Michael G. DeGroote School of MedicineMcMaster UniversityHamiltonCanada
  3. 3.Department of Biochemistry and Biomedical Sciences, Faculty of Health SciencesMcMaster UniversityHamiltonCanada
  4. 4.Department of Surgery, Faculty of Health SciencesMcMaster UniversityHamiltonCanada

Personalised recommendations